Double SHA-256 is really impressive (image inside) : Bitcoin

New miners: ASGARDmint ONE (23 Th/s) and DOUBLE (46 Th/s) SHA256 /r/Bitcoin

New miners: ASGARDmint ONE (23 Th/s) and DOUBLE (46 Th/s) SHA256 /Bitcoin submitted by SimilarAdvantage to BitcoinAll [link] [comments]

This equation from The Simpsons

This equation from The Simpsons submitted by deadbroccoli to Bitcoin [link] [comments]

Syscoin Platform’s Great Reddit Scaling Bake-off Proposal

Syscoin Platform’s Great Reddit Scaling Bake-off Proposal

https://preview.redd.it/rqt2dldyg8e51.jpg?width=1044&format=pjpg&auto=webp&s=777ae9d4fbbb54c3540682b72700fc4ba3de0a44
We are excited to participate and present Syscoin Platform's ideal characteristics and capabilities towards a well-rounded Reddit Community Points solution!
Our scaling solution for Reddit Community Points involves 2-way peg interoperability with Ethereum. This will provide a scalable token layer built specifically for speed and high volumes of simple value transfers at a very low cost, while providing sovereign ownership and onchain finality.
Token transfers scale by taking advantage of a globally sorting mempool that provides for probabilistically secure assumptions of “as good as settled”. The opportunity here for token receivers is to have an app-layer interactivity on the speed/security tradeoff (99.9999% assurance within 10 seconds). We call this Z-DAG, and it achieves high-throughput across a mesh network topology presently composed of about 2,000 geographically dispersed full-nodes. Similar to Bitcoin, however, these nodes are incentivized to run full-nodes for the benefit of network security, through a bonded validator scheme. These nodes do not participate in the consensus of transactions or block validation any differently than other nodes and therefore do not degrade the security model of Bitcoin’s validate first then trust, across every node. Each token transfer settles on-chain. The protocol follows Bitcoin core policies so it has adequate code coverage and protocol hardening to be qualified as production quality software. It shares a significant portion of Bitcoin’s own hashpower through merged-mining.
This platform as a whole can serve token microtransactions, larger settlements, and store-of-value in an ideal fashion, providing probabilistic scalability whilst remaining decentralized according to Bitcoin design. It is accessible to ERC-20 via a permissionless and trust-minimized bridge that works in both directions. The bridge and token platform are currently available on the Syscoin mainnet. This has been gaining recent attention for use by loyalty point programs and stablecoins such as Binance USD.

Solutions

Syscoin Foundation identified a few paths for Reddit to leverage this infrastructure, each with trade-offs. The first provides the most cost-savings and scaling benefits at some sacrifice of token autonomy. The second offers more preservation of autonomy with a more narrow scope of cost savings than the first option, but savings even so. The third introduces more complexity than the previous two yet provides the most overall benefits. We consider the third as most viable as it enables Reddit to benefit even while retaining existing smart contract functionality. We will focus on the third option, and include the first two for good measure.
  1. Distribution, burns and user-to-user transfers of Reddit Points are entirely carried out on the Syscoin network. This full-on approach to utilizing the Syscoin network provides the most scalability and transaction cost benefits of these scenarios. The tradeoff here is distribution and subscription handling likely migrating away from smart contracts into the application layer.
  2. The Reddit Community Points ecosystem can continue to use existing smart contracts as they are used today on the Ethereum mainchain. Users migrate a portion of their tokens to Syscoin, the scaling network, to gain much lower fees, scalability, and a proven base layer, without sacrificing sovereign ownership. They would use Syscoin for user-to-user transfers. Tips redeemable in ten seconds or less, a high-throughput relay network, and onchain settlement at a block target of 60 seconds.
  3. Integration between Matic Network and Syscoin Platform - similar to Syscoin’s current integration with Ethereum - will provide Reddit Community Points with EVM scalability (including the Memberships ERC777 operator) on the Matic side, and performant simple value transfers, robust decentralized security, and sovereign store-of-value on the Syscoin side. It’s “the best of both worlds”. The trade-off is more complex interoperability.

Syscoin + Matic Integration

Matic and Blockchain Foundry Inc, the public company formed by the founders of Syscoin, recently entered a partnership for joint research and business development initiatives. This is ideal for all parties as Matic Network and Syscoin Platform provide complementary utility. Syscoin offers characteristics for sovereign ownership and security based on Bitcoin’s time-tested model, and shares a significant portion of Bitcoin’s own hashpower. Syscoin’s focus is on secure and scalable simple value transfers, trust-minimized interoperability, and opt-in regulatory compliance for tokenized assets rather than scalability for smart contract execution. On the other hand, Matic Network can provide scalable EVM for smart contract execution. Reddit Community Points can benefit from both.
Syscoin + Matic integration is actively being explored by both teams, as it is helpful to Reddit, Ethereum, and the industry as a whole.

Proving Performance & Cost Savings

Our POC focuses on 100,000 on-chain settlements of token transfers on the Syscoin Core blockchain. Transfers and burns perform equally with Syscoin. For POCs related to smart contracts (subscriptions, etc), refer to the Matic Network proposal.
On-chain settlement of 100k transactions was accomplished within roughly twelve minutes, well-exceeding Reddit’s expectation of five days. This was performed using six full-nodes operating on compute-optimized AWS c4.2xlarge instances which were geographically distributed (Virginia, London, Sao Paulo Brazil, Oregon, Singapore, Germany). A higher quantity of settlements could be reached within the same time-frame with more broadcasting nodes involved, or using hosts with more resources for faster execution of the process.
Addresses used: 100,014
The demonstration was executed using this tool. The results can be seen in the following blocks:
612722: https://sys1.bcfn.ca/block/6d47796d043bb4c508d29123e6ae81b051f5e0aaef849f253c8f3a6942a022ce
612723: https://sys1.bcfn.ca/block/8e2077f743461b90f80b4bef502f564933a8e04de97972901f3d65cfadcf1faf
612724: https://sys1.bcfn.ca/block/205436d25b1b499fce44c29567c5c807beaca915b83cc9f3c35b0d76dbb11f6e
612725: https://sys1.bcfn.ca/block/776d1b1a0f90f655a6bbdf559ff5072459cbdc5682d7615ff4b78c00babdc237
612726: https://sys1.bcfn.ca/block/de4df0994253742a1ac8ac9eec8d2a8c8b0a6d72c53d6f3caa29bb6c171b0a6b
612727: https://sys1.bcfn.ca/block/e5e167c52a9decb313fbaadf49a5e34cb490f8084f642a850385476d4ef10d70
612728: https://sys1.bcfn.ca/block/ab64d989edc71890e7b5b8491c20e9a27520dc45a5f7c776d3dae79057f59fe7
612729: https://sys1.bcfn.ca/block/5e8b7ecd0e36f99d07e4ea6e135fc952bf7ec30164ab6f4d1e98b0f2d405df6d
612730: https://sys1.bcfn.ca/block/d395df3d31dde60bbb0bece6bd5b358297da878f0beb96be389e5f0e043580a3
It is important to note that this POC is not focused on Z-DAG. The performance of Z-DAG has been benchmarked within realistic network conditions: Whiteblock’s audit is publicly available. Network latency tests showed an average TPS around 15k with burst capacity up to 61k. Zero-latency control group exhibited ~150k TPS. Mainnet testing of the Z-DAG network is achievable and will require further coordination and additional resources.
Even further optimizations are expected in the upcoming Syscoin Core release which will implement a UTXO model for our token layer bringing further efficiency as well as open the door to additional scaling technology currently under research by our team and academic partners. At present our token layer is account-based, similar to Ethereum. Opt-in compliance structures will also be introduced soon which will offer some positive performance characteristics as well. It makes the most sense to implement these optimizations before performing another benchmark for Z-DAG, especially on the mainnet considering the resources required to stress-test this network.

Cost Savings

Total cost for these 100k transactions: $0.63 USD
See the live fee comparison for savings estimation between transactions on Ethereum and Syscoin. Below is a snapshot at time of writing:
ETH price: $318.55 ETH gas price: 55.00 Gwei ($0.37)
Syscoin price: $0.11
Snapshot of live fee comparison chart
Z-DAG provides a more efficient fee-market. A typical Z-DAG transaction costs 0.0000582 SYS. Tokens can be safely redeemed/re-spent within seconds or allowed to settle on-chain beforehand. The costs should remain about this low for microtransactions.
Syscoin will achieve further reduction of fees and even greater scalability with offchain payment channels for assets, with Z-DAG as a resilience fallback. New payment channel technology is one of the topics under research by the Syscoin development team with our academic partners at TU Delft. In line with the calculation in the Lightning Networks white paper, payment channels using assets with Syscoin Core will bring theoretical capacity for each person on Earth (7.8 billion) to have five on-chain transactions per year, per person, without requiring anyone to enter a fee market (aka “wait for a block”). This exceeds the minimum LN expectation of two transactions per person, per year; one to exist on-chain and one to settle aggregated value.

Tools, Infrastructure & Documentation

Syscoin Bridge

Mainnet Demonstration of Syscoin Bridge with the Basic Attention Token ERC-20
A two-way blockchain interoperability system that uses Simple Payment Verification to enable:
  • Any Standard ERC-20 token to be moved from Ethereum to the Syscoin blockchain as a Syscoin Platform Token (SPT), and back to Ethereum
  • Any SPT to be moved from Syscoin to the Ethereum blockchain as an ERC-20 token, and back to Syscoin

Benefits

  • Permissionless
  • No counterparties involved
  • No trading mechanisms involved
  • No third-party liquidity providers required
  • Cross-chain Fractional Supply - 2-way peg - Token supply maintained globally
  • ERC-20s gain vastly improved transactionality with the Syscoin Token Platform, along with the security of bitcoin-core-compliant PoW.
  • SPTs gain access to all the tooling, applications and capabilities of Ethereum for ERC-20, including smart contracts.
https://preview.redd.it/l8t2m8ldh8e51.png?width=1180&format=png&auto=webp&s=b0a955a0181746dc79aff718bd0bf607d3c3aa23
https://preview.redd.it/26htnxzfh8e51.png?width=1180&format=png&auto=webp&s=d0383d3c2ee836c9f60b57eca35542e9545f741d

Source code

https://github.com/syscoin/?q=sysethereum
Main Subprojects

API

Tools to simplify using Syscoin Bridge as a service with dapps and wallets will be released some time after implementation of Syscoin Core 4.2. These will be based upon the same processes which are automated in the current live Sysethereum Dapp that is functioning with the Syscoin mainnet.

Documentation

Syscoin Bridge & How it Works (description and process flow)
Superblock Validation Battles
HOWTO: Provision the Bridge for your ERC-20
HOWTO: Setup an Agent
Developer & User Diligence

Trade-off

The Syscoin Ethereum Bridge is secured by Agent nodes participating in a decentralized and incentivized model that involves roles of Superblock challengers and submitters. This model is open to participation. The benefits here are trust-minimization, permissionless-ness, and potentially less legal/regulatory red-tape than interop mechanisms that involve liquidity providers and/or trading mechanisms.
The trade-off is that due to the decentralized nature there are cross-chain settlement times of one hour to cross from Ethereum to Syscoin, and three hours to cross from Syscoin to Ethereum. We are exploring ways to reduce this time while maintaining decentralization via zkp. Even so, an “instant bridge” experience could be provided by means of a third-party liquidity mechanism. That option exists but is not required for bridge functionality today. Typically bridges are used with batch value, not with high frequencies of smaller values, and generally it is advantageous to keep some value on both chains for maximum availability of utility. Even so, the cross-chain settlement time is good to mention here.

Cost

Ethereum -> Syscoin: Matic or Ethereum transaction fee for bridge contract interaction, negligible Syscoin transaction fee for minting tokens
Syscoin -> Ethereum: Negligible Syscoin transaction fee for burning tokens, 0.01% transaction fee paid to Bridge Agent in the form of the ERC-20, Matic or Ethereum transaction fee for contract interaction.

Z-DAG

Zero-Confirmation Directed Acyclic Graph is an instant settlement protocol that is used as a complementary system to proof-of-work (PoW) in the confirmation of Syscoin service transactions. In essence, a Z-DAG is simply a directed acyclic graph (DAG) where validating nodes verify the sequential ordering of transactions that are received in their memory pools. Z-DAG is used by the validating nodes across the network to ensure that there is absolute consensus on the ordering of transactions and no balances are overflowed (no double-spends).

Benefits

  • Unique fee-market that is more efficient for microtransaction redemption and settlement
  • Uses decentralized means to enable tokens with value transfer scalability that is comparable or exceeds that of credit card networks
  • Provides high throughput and secure fulfillment even if blocks are full
  • Probabilistic and interactive
  • 99.9999% security assurance within 10 seconds
  • Can serve payment channels as a resilience fallback that is faster and lower-cost than falling-back directly to a blockchain
  • Each Z-DAG transaction also settles onchain through Syscoin Core at 60-second block target using SHA-256 Proof of Work consensus
https://preview.redd.it/pgbx84jih8e51.png?width=1614&format=png&auto=webp&s=5f631d42a33dc698365eb8dd184b6d442def6640

Source code

https://github.com/syscoin/syscoin

API

Syscoin-js provides tooling for all Syscoin Core RPCs including interactivity with Z-DAG.

Documentation

Z-DAG White Paper
Useful read: An in-depth Z-DAG discussion between Syscoin Core developer Jag Sidhu and Brave Software Research Engineer Gonçalo Pestana

Trade-off

Z-DAG enables the ideal speed/security tradeoff to be determined per use-case in the application layer. It minimizes the sacrifice required to accept and redeem fast transfers/payments while providing more-than-ample security for microtransactions. This is supported on the premise that a Reddit user receiving points does need security yet generally doesn’t want nor need to wait for the same level of security as a nation-state settling an international trade debt. In any case, each Z-DAG transaction settles onchain at a block target of 60 seconds.

Syscoin Specs

Syscoin 3.0 White Paper
(4.0 white paper is pending. For improved scalability and less blockchain bloat, some features of v3 no longer exist in current v4: Specifically Marketplace Offers, Aliases, Escrow, Certificates, Pruning, Encrypted Messaging)
  • 16MB block bandwidth per minute assuming segwit witness carrying transactions, and transactions ~200 bytes on average
  • SHA256 merge mined with Bitcoin
  • UTXO asset layer, with base Syscoin layer sharing identical security policies as Bitcoin Core
  • Z-DAG on asset layer, bridge to Ethereum on asset layer
  • On-chain scaling with prospect of enabling enterprise grade reliable trustless payment processing with on/offchain hybrid solution
  • Focus only on Simple Value Transfers. MVP of blockchain consensus footprint is balances and ownership of them. Everything else can reduce data availability in exchange for scale (Ethereum 2.0 model). We leave that to other designs, we focus on transfers.
  • Future integrations of MAST/Taproot to get more complex value transfers without trading off trustlessness or decentralization.
  • Zero-knowledge Proofs are a cryptographic new frontier. We are dabbling here to generalize the concept of bridging and also verify the state of a chain efficiently. We also apply it in our Digital Identity projects at Blockchain Foundry (a publicly traded company which develops Syscoin softwares for clients). We are also looking to integrate privacy preserving payment channels for off-chain payments through zkSNARK hub & spoke design which does not suffer from the HTLC attack vectors evident on LN. Much of the issues plaguing Lightning Network can be resolved using a zkSNARK design whilst also providing the ability to do a multi-asset payment channel system. Currently we found a showstopper attack (American Call Option) on LN if we were to use multiple-assets. This would not exist in a system such as this.

Wallets

Web3 and mobile wallets are under active development by Blockchain Foundry Inc as WebAssembly applications and expected for release not long after mainnet deployment of Syscoin Core 4.2. Both of these will be multi-coin wallets that support Syscoin, SPTs, Ethereum, and ERC-20 tokens. The Web3 wallet will provide functionality similar to Metamask.
Syscoin Platform and tokens are already integrated with Blockbook. Custom hardware wallet support currently exists via ElectrumSys. First-class HW wallet integration through apps such as Ledger Live will exist after 4.2.
Current supported wallets
Syscoin Spark Desktop
Syscoin-Qt

Explorers

Mainnet: https://sys1.bcfn.ca (Blockbook)
Testnet: https://explorer-testnet.blockchainfoundry.co

Thank you for close consideration of our proposal. We look forward to feedback, and to working with the Reddit community to implement an ideal solution using Syscoin Platform!

submitted by sidhujag to ethereum [link] [comments]

the year 2020 in Bitcoin Cash so far: a detailed history

the year 2020 in Bitcoin Cash so far: a detailed history
What follows at the bottom is a four page long chronological overview of what happened in BCH in 2020 so far. To make it more digestable and fun to read I start with my narrating of the story.
My attempt was to remain as objective as possible and "let the facts speak for themselve" with everything sourced. I also link to many read.cash articles, the decision of which are the important ones to include is certainly not easy, I count on the rest of the community if I overlooked anything important.

summary & my narrating of the story:
The year started out relatively calm, with cashfusion in "the news" and an older ongoing controversy between Amaury and Roger Ver being worked out. Starting Jan 22nd all debate broke loose with the announcement of “Infrastructure Funding Plan for Bitcoin Cash” by Jiang Zhuoer of BTC.TOP. To illustrate this point 2 days later coinspice ran the title " Roger Ver Praises Vigorous Debate, [...]" and 6 days, less than a week, later Chris Pacia made a read.cash post titled "The 253rd "Thoughts on developer funding" Article" which might have been only a slight exaggeration or he might have been counting. Part of the reason of the tsunami was the lack of worked out details. By the time of Pacia's post a lot had changed: Both BU, Bitcoin Verde and a group of miners had made announcements not to go along with "the plan".
On feb 1st, the second version of the IFP was announced by Jiang Zhuoer in a post “BCH miner donation plan update”. Two weeks later on Feb 15th, the third iteration was announced by Bitcoin ABC which was to be activated by hashrate voting and on the same day Flipstarter was introduced, a sign of the search for alternative solutions. After a few more days and a few more people coming out more against the IFP (including Jonald Fyookball, Mark Lundeberg & Josh Ellithorpe), BCHN was announced on feb 20th with a formal release a week later. Also feb 27th, the DAA was brought back into the conversation by Jonathan Toomim with his " The BCH difficulty adjustment algorithm is broken. Here's how to fix it." video. By early march the IFP was effectively dead with its author Jiang Zhuoer vowing to vote against it. This became clear to everyone when ABC, a day later sudddenly shifted gears towards non-protocol, donation based funding: the IFP was dead. End march ABCs 2020 Business Plan was announced as a way to raise $3.3 million. Mid april to mid may was the high time for voluntary funding with four node implementations and General Protocols, a BCH DeFi Startup successfully raising funds.
By May 15th, the 6th HF network upgrade things had pretty much cooled down. The upgraded included nothing controversial and even saw an unexpected doubling in the unconfirmed transaction chain. June 15th a month later things started to heat up again with the BCHN announcement to remove the "poison pill" or "automatic replay protection". 8th Jul Jonathan Toomim posted "BCH protocol upgrade proposal: Use ASERT as the new DAA" which promised the solution to the long dragging DAA problem. Jul 23th however an unexpected twist occurred when Amaury Séchet posted "Announcing the Grasberg DAA" an incompatible, alternative solution. This, again, sparked a ton of debate and discussion. Grasberg lasted just two weeks from Jul 23th to Aug 6th when ABC announced its plans for the november 2020 upgrade but it had successfully united the opposition in the meanwhile. ABCs plan for november included dropping grasberg in favour of aserti3–2d and introducing IFPv4. Now we're here August 8th, the IFP which was declared dead after just over a month (Jan 22-Mar 5) is now back in full force. The rest of the history is still being written but if p2p electronic cash is to succeed in any big regard it's very thinkable that these events will get into history books.

Important resources: coinspice IFP timeline & Compiled list of BCH Miner Dev Fund posts, articles, discussions

History
Jan 13th : “Do CoinJoins Really Require Equal Transaction Amounts for Privacy? Part One: CashFusion” article by BitcoinMagazine [source]
Jan 13th : “Clearing the Way for Cooperation” Read.cash article by Amaury Séchet [source] on the controversy with Roger Ver about the amount of donations over the years
Jan 22nd : “Infrastructure Funding Plan for Bitcoin Cash” IFPv1 announced by Jiang Zhuoer of BTC.TOP [source] IFPv1: 12.5% of BCH coinbase rewards which will last for 6 months through a Hong Kong-based corporation & to be activated on May 15th
Jan 22nd : ”Bitcoin Cash Developers React to Infrastructure Fund Announcement: Cautiously Optimistic” coinspice article including Amaury Séchet, Antony Zegers, Jonald Fyookball & Josh Ellithorpe [source]
Jan 23rd : Jiang Zhuoer reddit AMA [source] [coinspice article]
Jan 23rd : Vitalik weighs in with his take on twitter [source]
Jan 23rd :” On the infrastructure funding plan for Bitcoin Cash” article by Amaury Séchet [source] [coinspice article] in which he proposed to place control of the IFP key in his hands together with Jonald Fyookball and Antony Zegers. . A group of 7 to 12 miners, developers, and businessmen in total would get an advisory function.
Jan 24th : “Bitcoin.com's Clarifications on the Miner Development Fund“ which emphasizes, among other things, the temporary and reversible nature of the proposal [source] [coinspice article]
Jan 24th : “Little Known (But Important!) Facts About the Mining Plan” Read.cash article by Jonald Fyookball in which he defended the IFP and stressed its necessity and temporary nature.
Jan 25th : massive amounts of public debate as documented by coinspice [coinspice article] with Justin Bons, Tobias Ruck and Antony Zegers explaining their take on it.
Jan 26th : public debate continues: “Assessment and proposal re: the Bitcoin Cash infrastructure funding situation” Read.cash article by imaginary_username [source] which was noteworthy in part because the post earned over Earns $1,000+ in BCH [coinspice article] and “The Best Of Intentions: The Dev Tax Is Intended to Benefit Investors But Will Corrupt Us Instead” by Peter Rizun [source]
Jan 27th : “We are a group of miners opposing the BTC.TOP proposal, here's why” article on Read.cash [source] [reddit announcement]
Jan 27th : Bitcoin Unlimited's BUIP 143: Refuse the Coinbase Tax [source][reddit announcement]
Jan 28th : “Bitcoin Verde's Response to the Miner Sponsored Development Fund” read.cash article by Josh Green in which he explains “Bitcoin Verde will not be implementing any node validation that enforces new coinbase rules.” [source]
Jan 28th : “Update on Developer Funding” read.cash article from Bitcoin.com [source] in which they state “As it stands now, Bitcoin.com will not go through with supporting any plan unless there is more agreement in the ecosystem such that the risk of a chain split is negligible.” And that “any funding proposal must be temporary and reversible.” This announcement from bitcoin.com and their mining pool lead the anonymous opposition miners to stand down. [source]
Jan 28th : The 253rd "Thoughts on developer funding" Article – by Chris Pacia, to tackle the “serious misconceptions in the community about how software development works”. He ends on a note of support for the IFP because of lack of realistic alternatives. [source]
Feb 1st: “BCH miner donation plan update” IFPv2 announced by Jiang Zhuoer of BTC.TOP [source] Which changes the donation mechanism so miners directly send part of their coinbase to the projects they wants to donate to. It would be activated with hashrate voting over a 3-month period with a 2/3 in favour requirement. The proposal also introduces a pilot period and a no donation option, Jiang Zhuoer also says he regards 12.% as too much.
Feb 7th: Group of BCH miners led by AsicSeer voice scepticism about the IFP during a reddit AMA [source]
Feb 15th: “On the Miner Infrastructure Funding Plan” article by Bitcoin ABC [source] In which they announce they will implement IFPv3 in their upcoming 0.21.0 release. This version has amount reduced to 5% of block reward and will go in effect with BIP 9 hashratevoting and a whitelist with different projects.
Feb 15th : “Introducing Flipstarter” [source]
Feb 16th :” Bitcoin.com’s stance on the recent block reward diversion proposals” video by Roger Ver on the Bitcoin.com Official Channel. [source] > Ver called Zhuoer’s IFP “clever” but ultimately “problematic.” [coinspice article]
Feb 16th :” BCH miner donation plan update again” read.cash article by Jiang Zhuoer of BTC.TOP [source] In which he briefly outlines the details of IFPv3
Feb 17th : “Latest Thoughts On Infrastructure Mining Plan” post by Jonald Fyookball [source]
Feb 17th : “Regarding the Bitcoin Cash Infrastructure Funding Plan, I am certain now that it should be scrapped immediately.” tweet by Mark Lundeberg [source]
Feb 19th : “Thoughts on the IFP - A Dev Perspective“ read.cash article by Josh Ellithorpe [source]
Feb 20th : “Bitcoin Cash Node” post announcing the new node implementation [source]
Feb 20th : First “Bitcoin Cash Developer Meeting” After IFP Proposal [source]
Feb 24th : “Flipstarter 500k, 6 independent campaigns” post announcing the goal to “fund the BCH ecosystem with 6 independent campaigns and an overall 500,000 USD target” [source]
Feb 27th : BCHN Formally Released [source]
Feb 27th : “The BCH difficulty adjustment algorithm is broken. Here's how to fix it.” Video by Jonathan Toomim [source]
Mar 3th :” Bitcoin Cash Node 2020: plans for May upgrade and beyond” post by BCHN [source]
Mar 4th :”Author of the Bitcoin Cash IFP [Jiang Zhuoer] Vows to Vote Against It, Using Personal Hash in Opposition” [source]
Mar 5th :Bitcoin ABC announces their 2020 Business Plan Fundraising for later in march [source]
Mar 15th : “EatBCH campaign funded! Next: node campaigns.” campaign funded after 11 hours [source]
Mar 30th : Bitcoin ABC 2020 Business Plan [source] $3.3 Million Fundraiser [source]
Apr 17th : Five flipstarter node campaign launched. [source]
Apr 26th : BCHN flipstarter campaign successfully funded. [source]
Apr 27th : VERDE flipstarter campaign successfully funded. [source]
May 4th : KNUTH flipstarter campaign successfully funded. [source]
May 7th : “BCH DeFi Startup General Protocols Raises Over $1 mil“ [source]
May 8th : BCHD flipstarter campaign successfully funded. [source]
May 9th : Deadline for node campaigns, ABC flipstarter campaign not funded. [source]
May 14th : “With IFP Defeated, Bitcoin ABC, ViaBTC & CoinEX CEO Publicly Consider a Bitcoin Cash Foundation” [source]
May 15th : deadline for ABC fundraiser campaign, ends at 55% completed. [source]
May 15th : 6th HF network upgrade -> new opcode op_Reversebytes, increased of the chained transaction limit from 25 to 50, and the improved counting of signature operations using the new “Sigchecks” implementation [source] with the “Controversial Funding Plan Rejected by Miners” [source]
May 25th : “Announcing the SLP Foundation” [source]
Jun 15st : “BCHN lead maintainer report 2020-06-15” announcement to remove the Automatic Replay Protection (a.k.a. the Poison Pill) from BCHN in november [source]
Jun 16st : “So [BCHN] is going to fork off from BCH at the next upgrade. Same old story. […]” tweeted Vin Armani [source]
Jun 21st : “Why Automatic Replay Protection Exists” post by Shammah Chancellor [source]
Jul 7th : “The Popular Stablecoin Tether Is Now Circulating on the Bitcoin Cash Network” [source]
Jul 8th : “BCH protocol upgrade proposal: Use ASERT as the new DAA” post by Jonathan Toomim [source]
Jul 18th : “$6M Worth of Tether on the Bitcoin Cash Chain Highlights the Benefits of SLP Tokens” [source]
Jul 23th : “Announcing the Grasberg DAA” post by Amaury Séchet[source]
Jul 24th : “Thoughts on Grasberg DAA” post by Mark Lundeberg [source]
Jul 29th : CashFusion security audit has been completed [source]
Jul 31st : Electron Cash 4.1.0 release with CashFusion support [source]
4th year, august 2020 – 2021
Aug 1st : “Bitcoin Cash: Scaling the Globe“ Online conference for ForkDay Celebration [source]
Aug 2nd : >“Is there going to be a fork between ABC and BCHN?” > “IMO it is very likely. If not in November, then next May.” – Amaury Séchet
Aug 3rd : “Dark secrets of the Grasberg DAA” post by Jonathan Toomim [source]
Aug 3rd : “Joint Statement On aserti3-2d Algorithm“ post by General Protocols, including Cryptophyl, Read.cash, Software Verde & SpinBCH [source]
Aug 3rd : Knuth announces they will be implementing aserti3-2d as DAA for november. [source]
Aug 3rd : Amaury rage quit from the developer call [source]
Aug 4th : “But why do people care about compensating for historical drift? Seems like a tiny problem and if it's causing this much social discord it seems not even worth bothering to try to fix.” Tweet by Vitalik [source]
Aug 5th : “Bitcoin Cash (BCH) November 2020 Upgrade statement” signed by BCHD, electron cash, VERDE, BU members, BCHN developers, Jonathan Toomim, Mark B. Lundeberg and many others [source]
Aug 5th : “BCHN FAQ on November 2020 Bitcoin Cash network upgrade” [source]
Aug 6th : “Bitcoin ABC’s plan for the November 2020 upgrade” [source] the announcement that they will drop Grasberg in favour of aserti3–2d (ASERT) and will also include FPv4 in which 8% of the blockreward goes to ABC as development funding.
Aug 7th : “Joint Statement from BCH Miners regarding Bitcoin ABC and the November 2020 BCH Upgrade.” Read.cash article by asicseer [source] stating “Over recent months, most miners and pools have switched to BCHN, and presently operate a majority of BCH hashrate.”
Aug 7th : “Simple Ledger Protocol's Joint Statement Regarding Bitcoin ABC on BCH's November 2020 Upgrade” read.cash post by the SLP-Foundation [source]
submitted by Mr-Zwets to btc [link] [comments]

Signing Issue -- Signature must use SIGHASH_FORKID

Currently integrating my wallet software with Bitcoin Cash, but am having one hell of a time sending funds. I like to think I'm quite well versed with the bitcoin protocol, but this one has me stumped, so any help greatly appreciated.
Keep getting that, "Signature must use SIGHASH_FORKID" error. I know the general format of bitcoin txs, which is basically: Version + Num_Inputs + Inputs + Num_Outputs + Outputs + Locktime. Then I know how to sign via ECDSA, create the DER signatures, etc. That's all no problem.
This 0x40 SIGHASH is causing an issue though. What do I change within the original bitcoin tx to add that 0x40 in there?
I think one thing I have to do, is when getting that double SHA256 hash to sign, instead of adding '00000000' at the end you add '40000000' to get the proper hash to sign. However, what do I change in the DER signature to make this work? At the end of the DER there's a '01' so tried switching that to to 40, and no luck. Tried adding 40 at the end as some docs state, and again no luck.
Any help would be greatly appreciated, as I know this is a 30 second fix that I've already spent 3 days on. Google isn't much help on this one.
submitted by Envrin to Bitcoincash [link] [comments]

semi-quick answers to common questions of new people

so people often ask similar questions over here and because they are getting probably kinda annoying over time to many I just try to answer as many as I find. if you have more that would fit here, add them to the comments

submitted by My1xT to ledgerwallet [link] [comments]

Features of using PoW in the PYRK system

Features of using PoW in the PYRK system
Hello, community! 👋🏻 In this post, we will tell you about Proof-of-Work and Proof-of-Stake algorithms and why PYRK uses PoW.
⛏ Proof of work allows the blockchain to remain “clean”, allows the entire community to compete to verify the validity of transactions, and makes attacks on the system very costly. But is this cost of attack justified? Aste argues that it should be sufficient to make the double-spend attack too costly.
⛏ A double spend attack can occur in a situation where an attacker tries to send the same bitcoin to two different users. In such a case, the attacker would try to spend as many bitcoins as possible twice. This number is limited by the number of transactions that can fit in a block, which in value terms is currently about $ 2 million.
⛏ A transaction involving more than the total cost of transactions in the block will attract attention from the network. This puts a real limit on the size of a double spend of about $ 2 million. And although the duplication of transactions can be repeated several times sequentially or in parallel, we will neglect it in this calculation.
🏆 PYRK Proof-of-Work triple algorithm
🔹 PYRK takes a multiple algorithm approach. We propose to use algorithms which have had ASIC miners for quite some time. These are: SHA256, Scrypt, and X11.
🔹 Since these algorithms are already in wide use, the distribution of mining should be fair and even.
🔹 There’s a far less chance of any single person gaining a majority hash rate share when using three different algorithms simultaneously.
🔹 Also, we use the Multishield difficulty adjustment algorithm to prevent difficulty spike issues resulting from burst mining.
💡 The idea of multi-algorithm originated in Digibyte. Splitting the mining into three different algorithms effectively splits the amount of work performed by each algorithm to 33% of the total network hashrate. The triple algorithm approach helps to further protect the network from bad actors while also providing the preferred Proof-of-Work mechanism.
Read more about PYRK project: https://www.pyrk.org
https://preview.redd.it/3l5wegef9gc51.png?width=1200&format=png&auto=webp&s=7cb7391a1f3e01425de7eace49e674ac6f65c7ea
submitted by VS_community to pyrk [link] [comments]

Calculate txn_id from raw txn_hex

I'm trying to calculate a txn_id from raw txn_hex. The procedure works fine for legacy TXNs but gets non-expected results on Segwit TXNs. I compared this snippet of code to what txn_id was produced by Electrum and the blockchain.com TXN decoder:
  1. Take in TXN in hex
  2. Convert the hex to binarray
  3. Double hash binarray
  4. Reverse the resultant digest because of endianness
  5. Display in hex.
t0 is my legacy testnet TXN and t1 is my segwit testnet TXN.
Thoughts?

UPDATE

Found the relevant source in Electrum transaction.py:1036
Basically you strip the flags and tx_witnesses listed in the wiki spec
```python

!/usbin/env python3

[repo] https://github.com/brianddk/reddit ... python/txn_hash.py

[ref] https://www.reddit.com/g4hvyf

from hashlib import sha256
def txid(tx): bin = bytes.fromhex(tx) txid = sha256(sha256(bin).digest()).digest()[::-1].hex() return txid

Raw Legacy

t0 = ('0200000001cd3b93f5b24ae190ce5141235091cd93fbb2908e24e5b9ff6776ae' 'c11b0e04e5000000006b4830450221009f156db3585c19fe8e294578edbf5b5e' '4159a7afc3a7a00ebaab080dc25ecb9702202581f8ae41d7ade2f06c9bb9869e' '42e9091bafe39290820438b97931dab61e140121030e669acac1f280d1ddf441' 'cd2ba5e97417bf2689e4bbec86df4f831bf9f7ffd0fdffffff010005d9010000' '00001976a91485eb47fe98f349065d6f044e27a4ac541af79ee288ac00000000')

Raw Segwit

t1 = ('0200000000010100ff121dd31ead0f06e3014d9192be8485afd6459e36b09179' 'd8c372c1c494e20000000000fdffffff013ba3bf070000000017a914051877a0' 'cc43165e48975c1e62bdef3b6c942a38870247304402205644234fa352d1ddbe' 'c754c863638d2c26abb9381966358ace8ad7c52dda4250022074d8501460f4e4' 'f5ca9788e60afafa1e1bcbf93e51529defa48317ad83e069dd012103adc58245' 'cf28406af0ef5cc24b8afba7f1be6c72f279b642d85c48798685f86200000000')

UPDATE Raw Segwit with flags and tx_witnesses stripped

t2 = ('02000000' '0100ff121dd31ead0f06e3014d9192be8485afd6459e36b09179' 'd8c372c1c494e20000000000fdffffff013ba3bf070000000017a914051877a0' 'cc43165e48975c1e62bdef3b6c942a3887' '00000000')
print(f"t0: {txid(t0)}\nt1: {txid(t1)}\nt2: {txid(t2)}")

TXN_IDs from the above python

t0: cb33472bcaed59c66fae30d7802b6ea2ca97dc33c6aad76ce2e553b1b4a4e017

t1: b11fdde7e3e635c7f15863a9399cca42d46b5a42d87f4e779dfd4806af2401ce

t2: d360581ee248be29da9636b3d2e9470d8852de1afcf3c3644770c1005d415b30

TXN_IDs from Electrum

t0: cb33472bcaed59c66fae30d7802b6ea2ca97dc33c6aad76ce2e553b1b4a4e017

t1: d360581ee248be29da9636b3d2e9470d8852de1afcf3c3644770c1005d415b30

```
submitted by brianddk to Bitcoin [link] [comments]

Why I am supporting Bitcoin Cash

First, I want to say that I believe that Bitcoin (BTC) will moon and that lambo will rain, for several reasons that I won’t explain here and now. So please don't shit on me or down vote this post without explaining yourself properly. I'm saying this because the crypto community is full of young and emotional person insulting each other all the time without being able to explain their view clearly. I’m just sharing my story and my opinion, if I say something wrong, please let me know. No need to be emotional.
My story: I’m French (Forgive my English), a software engineer, working from home, previously in the banking industry, big noob in blockchain code related. I have been supporting bitcoin for a couple of times now, unfortunately I discovered it a bit late, promoting it to people around me as the peer to peer cash system and hoping that it will give us our financial freedom.
During this bear market and after losing a big part of my coins, I finally took the time to get a better understanding of each coin I’m holding and I quickly realised that Bitcoin Cash wasn’t a scam, that Bitcoin BTC is purely a speculative asset, the playground of professional traders, used to rekt noobs and that Lightning network will end as custodial wallets because no one will take the time/risk for opening/closing/securing a channel, especially poor people (few billions). There is no benefit for the average user in maintaining a LN node. I believe it will be more interesting to mine Bitcoin rather than maintaining a LN node.
So basically, I lost faith in the promise made by the Lightning Network which made me focusing on why Bitcoin Cash is the answer to a decentralized peer-to peer electronic cash system. I can confess that in the past I used to believe that second layer solution was the solution for everything, but I changed my mind.
To make it simple, BCH allows to make instant payment for very cheap whereas BTC can’t and won’t.

For each crypto project, I look at those different points:
1. Length of the chain
BTC and BCH are sharing the longest chain, it has been working well without any issues since now 10 years. No other project has such a good track record. This make me feel confident that the chance that this will continue to work as well for years or decades.

2. Community behind it
A good community for me is when you see technical people, risking their reputation/identity by posting videos, writing stuff and talking in public events about the project they support. Based on that, I believe the BCH community is the biggest of all. By technical people I mean someone talking using technical approach to back their opinion rather than beliefs based on emotions. Usually in the crypto space, those people are developers but it’s not always the case.
I made a small list of technical people supporting BCH:
-Peter R. Rizun: Chief Scientist, Bitcoin Unlimited.
-Vitalik Butterin (he often showed his support regarding BCH but didn’t produce any content)
-Jonald Fyookball: Electron Cash Developer
-Jonathan Toomim: Bitcoin cash developer who made interesting proof regarding scaling onchain)
-George Hotz: no need to present this awesome crazy dude!
-Amaury Séchet: Bitcoin Cash Developer and French! 😊
-Rick Falkvinge: Founder of the swedish pirate party, watch his youtube channel.
-Gabriel Cardona (Bitcoin cash developer)
-Justin Bons : Founder & CIO of Cyber Capital
-Dr. Mark B. Lundeberg: Developer researcher
And there is a lot more, but those people are people that I personally trust for their work they shared and that I like following.
Recently we had the Bitcoin cash city conference, another event full of people supporting BCH, that kind of thing doesn’t happen with other crypto. So many brilliant people supporting BCH, how could it be possible that all those guys are supporting a scam or a shitcoin. As well, there is often meetups and conferences all over the world.
The developer community is not centralized, there is multiple teams (BitcoinABC, Bitcoin Unlimited, BCHD, Bcash, Bitcoin Verde…) independent of each other arguing sometimes about technical and political stuff, this ensure that developments and important decisions are not centralized. I find this very healthy. If a fork occurs, it’s not a problem, it will simply double your coin and allows two different ways of thinking to grow and compete. This won’t happen in Bitcoin (BTC) anymore, the way of thinking is centralized for BTC, they all share the same view: the segwit workaround + small block + layer 2 = (moon + lambo) in 18 months.
Regarding CSW, I don’t believe in this guy for now but maybe I’m wrong, maybe this guy is wrongly understood but based on all the things I know about him, he seems too complicated to be someone honest. Honesty comes with simplicity.
Finally, regarding Roger Ver: He is hated a lot and I still don't understand why, I feel sorry for him, I really tried my best to hate him like the crowd, but I couldn’t find any reasons. Many people are saying that he is lying and scamming people but none of them are technically able to explain why. It's really a crazy story and I understand why some people call him "Bitcoin Jesus". I personally think he is doing a great job and I thank him.

3. The current and future adoption
BCH is used by reel people and reel shops (check the bitcoin cash map), there are transactions on the network to buy and sell real things that exist in the real world. Can you believe this? Maybe the only blockchain having that. Please let me know if you know another blockchain which is today serving the real world.
The Bitcoin cash wallet app is easy and exciting to use. Same for the app for merchant. This can be used by my old mum! The BCH roadmap shows that more features will be added to simplify and enhance the user experience. I can’t find other blockchain having that level of user friendliness.
Recently Roger Ver announced HTC mobile phone with a BCH wallet preinstalled. I read as well that Burger King is accepting BCH, but I haven’t verified if this was legit or not.

4. Existing features and roadmap
-Multiple wallets built on all platform.
-Bitcoin Cash point of sales: this app is the app that merchant should use to accept Bitcoin, as well very easy to use and takes 5min to install.
-Cash shuffle with Cash fusion allowing to transact anonymously, making BCH competing with privacy focused coins such like Zcash, Monero, Dash. I heard this function will be implemented as well on mobile devices.
-SLP token: The simplicity of creating a token and sending dividends make BCH a bit competing with all smart blockchain. Anyone can create a token, raise funds and send dividends easily and it works! Will Bitcoin Cash evolve to a smart economy?
-memo.cash: A social network stored on the blockchain, fixing the problem of censorship we have on reddit for example. I recently discovered it, it’s awesome to know that you can write whatever you want, and nobody will be able to delete it and this forever. It’s really an awesome experience. I invite you to test it. For example, yesterday I had fun creating, sending token and being tipped in BCH or in any token by random people, it really shows the potential of BCH. I think I made around 50 on chain transactions in less than one hour with less than 10 cents.
-Stable coins: We can build stable coin on BCH; this is something very important as well.
Regarding the roadmap: It’s well described on bitcoincash.org and looks promising, but no update since the last 5 months. Not sure if it’s normal.

5. Security
SHA256 based algorithm are I believe the most secure, I don’t think we need to add more regarding this. Maybe someone can help me to find some downside regarding security, often some people talk about the potential 51% attack that could occurs on BCH but I couldn’t manage to have my own opinion regarding this.
Regarding the double spending attack because of the zero confirmation, I have asked many people to explain to me how this could potentially be a problem for a real merchant. I think that small and insignificant amount doesn’t need instant confirmation but if you sell a lambo then of course you should wait for at least 5 confirmations.
To summarize I would even consider that zero conf is more advantageous than Lightning Network if you take everything into consideration. Worth case scenario if your restaurant is victim of a double spending attack a few times, you will just increase the confirmation level and prevent your customer from living your place. I think that it’s easier to print fake fiat money and try to pay with it rather than trying a double spending attack. But again, I might have misunderstood something or maybe there is more sophisticated exploits that I haven’t thought of.

6. Price
21 million coins, no inflation, the price currently around 300usd, a boiling community. The potential gains could be as good as BTC and even more. Maybe it’s the so waited coin that you will never convert back to that shit fiat. Certainly, one of the best coins to invest in now.

7. Electricity and efficiency
Since the cost of electricity is the same whatever the size of the block, it means that BCH is more environment friendly than BTC for the same amount of transaction or we can say that it’s "wasting" less energy. Maybe if LN works one day this will change.

My Conclusion:
Bitcoin is technically the worst coin; all others existing coins are better technically. But Bitcoin survives because of the network effect, illustrated by its biggest hash rate, making BTC the most secure blockchain. As well because of promises made by the Lightning Network. Bitcoin is the gold of crypto currencies. Bitcoin like Gold have both almost no utility. In a traditional market, gold drop when economy goes well and goes up when investors need to find a refuge. BTC is the drop zone for fresh meat.
Most of the BTC holders cannot think clearly regarding the BTC/BCH debate, they become completely irrational. This kind of behaviour leads to ruin, especially in trading/investment.With low fees, instant transaction, smart contracts, big community, user friendly apps, stable coin and a lot more to come, Bitcoin Cash has clearly a good future. I hope that someone will find my post useful. Cheers.
submitted by talu3000 to btc [link] [comments]

Profitability of purchasing hash rate

I'm investigating the nicehash markets for a research project and wanted to double-check my primary conclusion. In particular, it appears that purchasing hash rate on nicehash is very far from profitable, at least for the most common PoW algorithms.
For example, the SHA256 page currently shows that it is possible to purchase 1 PH (per day) for 0.0195 BTC. The current hash rate of Bitcoin is somewhere in the neighborhood of 100 EH/s == 100e3 PH/s. It takes 600 seconds (on average) to mine a BTC block, so this translates to approximately 6e7 PH to mine a block. Therefore, 1 PH can buy about 1/6e7 of a block reward or 12.5/6e7 BTC. Looking at the cost / profit ratio then, we have 0.0195 / (12.5/6e7) = 93.6e3.
So it appears that the price to purchase SHA256 hash rate would need to drop by five orders of magnitude before it was profitable. Is this correct or have I made an error somewhere in my reasoning?
Edit: Instead of "Price" units being BTC/PH/day, should it actually be BTC/(PH/s)/day (see attached image)?
https://preview.redd.it/yhqionkeqyc41.png?width=1242&format=png&auto=webp&s=608bae0cb8104dd122b3d0b82bc7685187462ef2
submitted by bissias to NiceHash [link] [comments]

Bitcoin protocol with socket

Bitcoin protocol with socket
Hello,
I develop bitcoin protocol using socket, but met some issues. Firstly, when my code connects to bitcoin node, it doesn't give any response. I send version message, but another side node doesn't re-send anything. I think that problem could be that I implement protocol wrong, but I checked and think that it's fine. (2) Secondly, I think that could be impossible connect to bitcoin node using socket, but it's stupid idea. Yea?

One important thing, I coded only socket connection, version sending to bitcoin node, which I found on https://bitnodes.earn.com/nodes/ , and message receiving from node, but it always responses -1.

One more thing, I don't give response from node, but also don't give connection error. (I just say)

Please help me :)
What is wrong that I send version message, but then doesn't give another one from node?

Also, I attach output (connection phases and protocol structure) of console when try to connect to socket.
Connected
f9beb4d976657273696f6e0000000000000000660a75c8397f1101000100000000000000820b905c00000000010000000000000000000000000000000000ffff340e5966208d010000000000000000000000000000000000ffff7f000001208db910e81a17a5dd79102f417572696d61733a302e31362e332f0000000001
Magic:f9beb4d9
Command:76657273696f6e0000000000
Length:00000066
Checksum:0a75c839
Payload:7f1101000100000000000000820b905c00000000010000000000000000000000000000000000ffff340e5966208d010000000000000000000000000000000000ffff7f000001208db910e81a17a5dd79102f417572696d61733a302e31362e332f0000000001
Version:7f110100
Services:0100000000000000
timestamp:820b905c00000000
addr_recv:010000000000000000000000000000000000ffff340e5966208d
addr_from:010000000000000000000000000000000000ffff7f000001208d
nonce:b910e81a17a5dd79
user_agent:102f417572696d61733a302e31362e332f
start_height:00000000
relay:01
Connection end
https://preview.redd.it/udz4lvcyh3n21.png?width=1353&format=png&auto=webp&s=39dd95b138422c07d0a26ef48d904e81d5f9becb
submitted by demola436 to bitcoincashSV [link] [comments]

How does the fairness system work on BetFury?

How does the fairness system work on BetFury?

https://preview.redd.it/9tip15i096t41.png?width=1200&format=png&auto=webp&s=a0027f11d8da2c04e1cc21ef811d299030c888fb
The BetFury community is constantly growing and attracting more and more followers! Most of all we are excited that you are interested in the details of the platform’s work. It means that we have a common goal — to make the world of crypto gambling better! We know that players are especially interested in the convenience and openness of the platform.

How does fairness work on the BetFury platform?

Every bet on BetFury is absolutely random. How are you supposed to know that? It’s a fair question! Let’s look at one case of Dice, where the random number generator chooses the winning number from 0 to 99 and preferred by user range will define the reward.
  • Let’s say we think the winning number is less than 50;
  • Random Lucky result generated and mixed with random Server seed for every bet (in this round, the number 18 was encrypted in a hash). Hash sum of this mixing is shown for the user in the time of each turnover of the game. In this case, the hash you can see under the yellow Bet button.
https://preview.redd.it/pcsrdp7a86t41.png?width=1276&format=png&auto=webp&s=8d497acf93567ea8ede679cb4752d5bb8fd2c2fd
  • The provably fair principle is based on SHA256 technology the same as Bitcoin.
  • You can check the result by clicking the “Fairness” in the window of the game and find the result of each bet.
https://preview.redd.it/wvznzo5d86t41.png?width=1240&format=png&auto=webp&s=c70c3d0fde673b0be08001519b55d6f3c3dfae2e
By clicking on the “CHECK” button, you can double-check the encrypted number (server seed + lucky number). To do this copy Random Seed, go to http://www.convertstring.com/Hash/SHA256 or use any other SHA256 hash on-line calculator. The issued hash must match that fixed on the BetFury platform.
https://preview.redd.it/2a09lk6g86t41.png?width=1335&format=png&auto=webp&s=ba4aa3dd9b024359b0c4d391b6637e433f8197e6
https://preview.redd.it/9ibwghnh86t41.png?width=707&format=png&auto=webp&s=0417c0e525ab2d00908f3cc9b6970f03945fc681
Similarly, you can check the results of each of your bets in other games on the BetFury platform.
New fairness pop-ups in Hi-Lo, Mines, Keno and Stairs.
To check fairness in these games find the “My bets” section under the game’s field. Click on one of the bets and the pop-up should appear.
As the example let’s take Mines. Here you can see when was the bet done, bet id, amount of the bet, multiplier and payout.
Copy Random Seed. Press Check Fairness to continue. In the opened window paste the Random Seed. The issued hash below must match that fixed on the BetFury platform.
https://preview.redd.it/bhearvfn86t41.png?width=552&format=png&auto=webp&s=2e0b7ed6719d7138bde3145036808ff4ff3ff900
https://preview.redd.it/uzf4z9vo86t41.png?width=1080&format=png&auto=webp&s=1816562ffa81cb83d4bbf3ae5a1b6b941c04ac54
How to check all the game statistics?
You can check the details of winning and losing bets in the tab Account — Game history.
https://preview.redd.it/3rn5y74s86t41.png?width=1400&format=png&auto=webp&s=0fd48d1044740c8c5df3850090c410b003cd1340
https://preview.redd.it/dprr0kpt86t41.png?width=1346&format=png&auto=webp&s=84dd29a18722b296cd596b1120173151a17a188d
Thanks for interest in the BetFury platform. We wish you successful bets, interesting games and excellent dividends!
________________________________________________________________________________________________________
Link to the Website: https://betfury.io Link to the Telegram: http://t.me/betfury Link to the Twitter: https://twitter.com/betfury_io Link to the Telegram Channel: https://t.me/betfuryofficialchannel Link to the Steemit: https://steemit.com/@betfury-steem Link to Facebook: https://www.facebook.com/BetFury.io/ Link to Instagram: https://instagram.com/betfury.io Link to Reddit: https://www.reddit.com/useBetFury_io
Regards, the BetFury team
submitted by BetFury_io to u/BetFury_io [link] [comments]

Transcript of discussion between an ASIC designer and several proof-of-work designers from #monero-pow channel on Freenode this morning

[08:07:01] lukminer contains precompiled cn/r math sequences for some blocks: https://lukminer.org/2019/03/09/oh-kay-v4r-here-we-come/
[08:07:11] try that with RandomX :P
[08:09:00] tevador: are you ready for some RandomX feedback? it looks like the CNv4 is slowly stabilizing, hashrate comes down...
[08:09:07] how does it even make sense to precompile it?
[08:09:14] mine 1% faster for 2 minutes?
[08:09:35] naturally we think the entire asic-resistance strategy is doomed to fail :) but that's a high-level thing, who knows. people may think it's great.
[08:09:49] about RandomX: looks like the cache size was chosen to make it GPU-hard
[08:09:56] looking forward to more docs
[08:11:38] after initial skimming, I would think it's possible to make a 10x asic for RandomX. But at least for us, we will only make an ASIC if there is not a total ASIC hostility there in the first place. That's better for the secret miners then.
[08:13:12] What I propose is this: we are working on an Ethash ASIC right now, and once we have that working, we would invite tevador or whoever wants to come to HK/Shenzhen and we walk you guys through how we would make a RandomX ASIC. You can then process this input in any way you like. Something like that.
[08:13:49] unless asics (or other accelerators) re-emerge on XMR faster than expected, it looks like there is a little bit of time before RandomX rollout
[08:14:22] 10x in what measure? $/hash or watt/hash?
[08:14:46] watt/hash
[08:15:19] so you can make 10 times more efficient double precisio FPU?
[08:16:02] like I said let's try to be productive. You are having me here, let's work together!
[08:16:15] continue with RandomX, publish more docs. that's always helpful.
[08:16:37] I'm trying to understand how it's possible at all. Why AMD/Intel are so inefficient at running FP calculations?
[08:18:05] midipoet ([email protected]/web/irccloud.com/x-vszshqqxwybvtsjm) has joined #monero-pow
[08:18:17] hardware development works the other way round. We start with 1) math then 2) optimization priority 3) hw/sw boundary 4) IP selection 5) physical implementation
[08:22:32] This still doesn't explain at which point you get 10x
[08:23:07] Weren't you the ones claiming "We can accelerate ProgPoW by a factor of 3x to 8x." ? I find it hard to believe too.
[08:30:20] sure
[08:30:26] so my idea: first we finish our current chip
[08:30:35] from simulation to silicon :)
[08:30:40] we love this stuff... we do it anyway
[08:30:59] now we have a communication channel, and we don't call each other names immediately anymore: big progress!
[08:31:06] you know, we russians have a saying "it was smooth on paper, but they forgot about ravines"
[08:31:12] So I need a bit more details
[08:31:16] ha ha. good!
[08:31:31] that's why I want to avoid to just make claims
[08:31:34] let's work
[08:31:40] RandomX comes in Sep/Oct, right?
[08:31:45] Maybe
[08:32:20] We need to audit it first
[08:32:31] ok
[08:32:59] we don't make chips to prove sw devs that their assumptions about hardware are wrong. especially not if these guys then promptly hardfork and move to the next wrong assumption :)
[08:33:10] from the outside, this only means that hw & sw are devaluing each other
[08:33:24] neither of us should do this
[08:33:47] we are making chips that can hopefully accelerate more crypto ops in the future
[08:33:52] signing, verifying, proving, etc.
[08:34:02] PoW is just a feature like others
[08:34:18] sech1: is it easy for you to come to Hong Kong? (visa-wise)
[08:34:20] or difficult?
[08:34:33] or are you there sometimes?
[08:34:41] It's kind of far away
[08:35:13] we are looking forward to more RandomX docs. that's the first step.
[08:35:31] I want to avoid that we have some meme "Linzhi says they can accelerate XYZ by factor x" .... "ha ha ha"
[08:35:37] right? we don't want that :)
[08:35:39] doc is almost finished
[08:35:40] What docs do you need? It's described pretty good
[08:35:41] so I better say nothing now
[08:35:50] we focus on our Ethash chip
[08:36:05] then based on that, we are happy to walk interested people through the design and what else it can do
[08:36:22] that's a better approach from my view than making claims that are laughed away (rightfully so, because no silicon...)
[08:36:37] ethash ASIC is basically a glorified memory controller
[08:36:39] sech1: tevador said something more is coming (he just did it again)
[08:37:03] yes, some parts of RandomX are not described well
[08:37:10] like dataset access logic
[08:37:37] RandomX looks like progpow for CPU
[08:37:54] yes
[08:38:03] it is designed to reflect CPU
[08:38:34] so any ASIC for it = CPU in essence
[08:39:04] of course there are still some things in regular CPU that can be thrown away for RandomX
[08:40:20] uncore parts are not used, but those will use very little power
[08:40:37] except for memory controller
[08:41:09] I'm just surprised sometimes, ok? let me ask: have you designed or taped out an asic before? isn't it risky to make assumptions about things that are largely unknown?
[08:41:23] I would worry
[08:41:31] that I get something wrong...
[08:41:44] but I also worry like crazy that CNv4 will blow up, where you guys seem to be relaxed
[08:42:06] I didn't want to bring up anything RandomX because CNv4 is such a nailbiter... :)
[08:42:15] how do you guys know you don't have asics in a week or two?
[08:42:38] we don't have experience with ASIC design, but RandomX is simply designed to exactly fit CPU capabilities, which is the best you can do anyways
[08:43:09] similar as ProgPoW did with GPUs
[08:43:14] some people say they want to do asic-resistance only until the vast majority of coins has been issued
[08:43:21] that's at least reasonable
[08:43:43] yeah but progpow totally will not work as advertised :)
[08:44:08] yeah, I've seen that comment about progpow a few times already
[08:44:11] which is no surprise if you know it's just a random sales story to sell a few more GPUs
[08:44:13] RandomX is not permanent, we are expecting to switch to ASIC friendly in a few years if possible
[08:44:18] yes
[08:44:21] that makes sense
[08:44:40] linzhi-sonia: how so? will it break or will it be asic-able with decent performance gains?
[08:44:41] are you happy with CNv4 so far?
[08:45:10] ah, long story. progpow is a masterpiece of deception, let's not get into it here.
[08:45:21] if you know chip marketing it makes more sense
[08:45:24] linzhi-sonia: So far? lol! a bit early to tell, don't you think?
[08:45:35] the diff is coming down
[08:45:41] first few hours looked scary
[08:45:43] I remain skeptical: I only see ASICs being reasonable if they are already as ubiquitous as smartphones
[08:45:46] yes, so far so good
[08:46:01] we kbew the diff would not come down ubtil affter block 75
[08:46:10] yes
[08:46:22] but first few hours it looks like only 5% hashrate left
[08:46:27] looked
[08:46:29] now it's better
[08:46:51] the next worry is: when will "unexplainable" hashrate come back?
[08:47:00] you hope 2-3 months? more?
[08:47:05] so give it another couple of days. will probably overshoot to the downside, and then rise a bit as miners get updated and return
[08:47:22] 3 months minimum turnaround, yes
[08:47:28] nah
[08:47:36] don't underestimate asicmakers :)
[08:47:54] you guys don't get #1 priority on chip fabs
[08:47:56] 3 months = 90 days. do you know what is happening in those 90 days exactly? I'm pretty sure you don't. same thing as before.
[08:48:13] we don't do any secret chips btw
[08:48:21] 3 months assumes they had a complete design ready to go, and added the last minute change in 1 day
[08:48:24] do you know who is behind the hashrate that is now bricked?
[08:48:27] innosilicon?
[08:48:34] hyc: no no, and no. :)
[08:48:44] hyc: have you designed or taped out a chip before?
[08:48:51] yes, many years ago
[08:49:10] then you should know that 90 days is not a fixed number
[08:49:35] sure, but like I said, other makers have greater demand
[08:49:35] especially not if you can prepare, if you just have to modify something, or you have more programmability in the chip than some people assume
[08:50:07] we are chipmakers, we would never dare to do what you guys are doing with CNv4 :) but maybe that just means you are cooler!
[08:50:07] and yes, programmability makes some aspect of turnaround easier
[08:50:10] all fine
[08:50:10] I hope it works!
[08:50:28] do you know who is behind the hashrate that is now bricked?
[08:50:29] inno?
[08:50:41] we suspect so, but have no evidence
[08:50:44] maybe we can try to find them, but we cannot spend too much time on this
[08:50:53] it's probably not so much of a secret
[08:51:01] why should it be, right?
[08:51:10] devs want this cat-and-mouse game? devs get it...
[08:51:35] there was one leak saying it's innosilicon
[08:51:36] so you think 3 months, ok
[08:51:43] inno is cool
[08:51:46] good team
[08:51:49] IP design house
[08:51:54] in Wuhan
[08:52:06] they send their people to conferences with fake biz cards :)
[08:52:19] pretending to be other companies?
[08:52:26] sure
[08:52:28] ha ha
[08:52:39] so when we see them, we look at whatever card they carry and laugh :)
[08:52:52] they are perfectly suited for secret mining games
[08:52:59] they made at most $6 million in 2 months of mining, so I wonder if it was worth it
[08:53:10] yeah. no way to know
[08:53:15] but it's good that you calculate!
[08:53:24] this is all about cost/benefit
[08:53:25] then you also understand - imagine the value of XMR goes up 5x, 10x
[08:53:34] that whole "asic resistance" thing will come down like a house of cards
[08:53:41] I would imagine they sell immediately
[08:53:53] the investor may fully understand the risk
[08:53:57] the buyer
[08:54:13] it's not healthy, but that's another discussion
[08:54:23] so mid-June
[08:54:27] let's see
[08:54:49] I would be susprised if CNv4 ASICs show up at all
[08:54:56] surprised*
[08:54:56] why?
[08:55:05] is only an economic question
[08:55:12] yeah should be interesting. FPGAs will be near their limits as well
[08:55:16] unless XMR goes up a lot
[08:55:19] no, not *only*. it's also a technology question
[08:55:44] you believe CNv4 is "asic resistant"? which feature?
[08:55:53] it's not
[08:55:59] cnv4 = Rabdomx ?
[08:56:03] no
[08:56:07] cnv4=cryptinight/r
[08:56:11] ah
[08:56:18] CNv4 is the one we have now, I think
[08:56:21] since yesterday
[08:56:30] it's plenty enough resistant for current XMR price
[08:56:45] that may be, yes!
[08:56:55] I look at daily payouts. XMR = ca. 100k USD / day
[08:57:03] it can hold until October, but it's not asic resistant
[08:57:23] well, last 24h only 22,442 USD :)
[08:57:32] I think 80 h/s per watt ASICs are possible for CNv4
[08:57:38] linzhi-sonia where do you produce your chips? TSMC?
[08:57:44] I'm cruious how you would expect to build a randomX ASIC that outperforms ARM cores for efficiency, or Intel cores for raw speed
[08:57:48] curious
[08:58:01] yes, tsmc
[08:58:21] Our team did the world's first bitcoin asic, Avalon
[08:58:25] and upcoming 2nd gen Ryzens (64-core EPYC) will be a blast at RandomX
[08:58:28] designed and manufactured
[08:58:53] still being marketed?
[08:59:03] linzhi-sonia: do you understand what xmr wants to achieve, community-wise?
[08:59:14] Avalon? as part of Canaan Creative, yes I think so.
[08:59:25] there's not much interesting oing on in SHA256
[08:59:29] Inge-: I would think so, but please speak
[08:59:32] hyc: yes
[09:00:28] linzhi-sonia: i am curious to hear your thoughts. I am fairly new to this space myself...
[09:00:51] oh
[09:00:56] we are grandpas, and grandmas
[09:01:36] yet I have no problem understanding why ASICS are currently reviled.
[09:01:48] xmr's main differentiators to, let's say btc, are anonymity and fungibility
[09:01:58] I find the client terribly slow btw
[09:02:21] and I think the asic-forking since last may is wrong, doesn't create value and doesn't help with the project objectives
[09:02:25] which "the client" ?
[09:02:52] Monero GUI client maybe
[09:03:12] MacOS, yes
[09:03:28] What exactly is slow?
[09:03:30] linzhi-sonia: I run my own node, and use the CLI and Monerujo. Have not had issues.
[09:03:49] staying in sync
[09:03:49] linzhi-sonia: decentralization is also a key principle
[09:03:56] one that Bitcoin has failed to maintain
[09:04:39] hmm
[09:05:00] looks fairly decentralized to me. decentralization is the result of 3 goals imo: resilient, trustless, permissionless
[09:05:28] don't ask a hardware maker about physical decentralization. that's too ideological. we focus on logical decentralization.
[09:06:11] physical decentralization is important. with bulk of bitnoin mining centered on Chinese hydroelectric dams
[09:06:19] have you thought about including block data in the PoW?
[09:06:41] yes, of course.
[09:07:39] is that already in an algo?
[09:08:10] hyc: about "centered on chinese hydro" - what is your source? the best paper I know is this: https://coinshares.co.uk/wp-content/uploads/2018/11/Mining-Whitepaper-Final.pdf
[09:09:01] linzhi-sonia: do you mine on your ASICs before you sell them?
[09:09:13] besides testing of course
[09:09:45] that paper puts Chinese btc miners at 60% max
[09:10:05] tevador: I think everybody learned that that is not healthy long-term!
[09:10:16] because it gives the chipmaker a cost advantage over its own customers
[09:10:33] and cost advantage leads to centralization (physical and logical)
[09:10:51] you guys should know who finances progpow and why :)
[09:11:05] but let's not get into this, ha ha. want to keep the channel civilized. right OhGodAGirl ? :)
[09:11:34] tevador: so the answer is no! 100% and definitely no
[09:11:54] that "self-mining" disease was one of the problems we have now with asics, and their bad reputation (rightfully so)
[09:13:08] I plan to write a nice short 2-page paper or so on our chip design process. maybe it's interesting to some people here.
[09:13:15] basically the 5 steps I mentioned before, from math to physical
[09:13:32] linzhi-sonia: the paper you linked puts 48% of bitcoin mining in Sichuan. the total in China is much more than 60%
[09:13:38] need to run it by a few people to fix bugs, will post it here when published
[09:14:06] hyc: ok! I am just sharing the "best" document I know today. it definitely may be wrong and there may be a better one now.
[09:14:18] hyc: if you see some reports, please share
[09:14:51] hey I am really curious about this: where is a PoW algo that puts block data into the PoW?
[09:15:02] the previous paper I read is from here http://hackingdistributed.com/2018/01/15/decentralization-bitcoin-ethereum/
[09:15:38] hyc: you said that already exists? (block data in PoW)
[09:15:45] it would make verification harder
[09:15:49] linzhi-sonia: https://the-eye.eu/public/Books/campdivision.com/PDF/Computers%20General/Privacy/bitcoin/meh/hashimoto.pdf
[09:15:51] but for chips it would be interesting
[09:15:52] we discussed the possibility about a year ago https://www.reddit.com/Monero/comments/8bshrx/what_we_need_to_know_about_proof_of_work_pow/
[09:16:05] oh good links! thanks! need to read...
[09:16:06] I think that paper by dryja was original
[09:17:53] since we have a nice flow - second question I'm very curious about: has anyone thought about in-protocol rewards for other functions?
[09:18:55] we've discussed micropayments for wallets to use remote nodes
[09:18:55] you know there is a lot of work in other coins about STARK provers, zero-knowledge, etc. many of those things very compute intense, or need to be outsourced to a service (zether). For chipmakers, in-protocol rewards create an economic incentive to accelerate those things.
[09:19:50] whenever there is an in-protocol reward, you may get the power of ASICs doing something you actually want to happen
[09:19:52] it would be nice if there was some economic reward for running a fullnode, but no one has come up with much more than that afaik
[09:19:54] instead of fighting them off
[09:20:29] you need to use asics, not fight them. that's an obvious thing to say for an asicmaker...
[09:20:41] in-protocol rewards can be very powerful
[09:20:50] like I said before - unless the ASICs are so useful they're embedded in every smartphone, I dont see them being a positive for decentralization
[09:21:17] if they're a separate product, the average consumer is not going to buy them
[09:21:20] now I was talking about speedup of verifying, signing, proving, etc.
[09:21:23] they won't even know what they are
[09:22:07] if anybody wants to talk about or design in-protocol rewards, please come talk to us
[09:22:08] the average consumer also doesn't use general purpose hardware to secure blockchains either
[09:22:14] not just for PoW, in fact *NOT* for PoW
[09:22:32] it requires sw/hw co-design
[09:23:10] we are in long-term discussions/collaboration over this with Ethereum, Bitcoin Cash. just talk right now.
[09:23:16] this was recently published though suggesting more uptake though I guess https://btcmanager.com/college-students-are-the-second-biggest-miners-of-cryptocurrency/
[09:23:29] I find it pretty hard to believe their numbers
[09:24:03] well
[09:24:09] sorry, original article: https://www.pcmag.com/news/366952/college-kids-are-using-campus-electricity-to-mine-crypto
[09:24:11] just talk, no? rumors
[09:24:18] college students are already more educated than the average consumer
[09:24:29] we are not seeing many such customers anymore
[09:24:30] it's data from cisco monitoring network traffic
[09:24:33] and they're always looking for free money
[09:24:48] of course anyone with "free" electricity is inclined to do it
[09:24:57] but look at the rates, cannot make much money
[09:26:06] Ethereum is a bloated collection of bugs wrapped in a UI. I suppose they need all the help they can get
[09:26:29] Bitcoin Cash ... just another get rich quick scheme
[09:26:38] hmm :)
[09:26:51] I'll give it back to you, ok? ha ha. arrogance comes before the fall...
[09:27:17] maye we should have a little fun with CNv4 mining :)
[09:27:25] ;)
[09:27:38] come on. anyone who has watched their track record... $75M lost in ETH at DAO hack
[09:27:50] every smart contract that comes along is just waiting for another hack
[09:27:58] I just wanted to throw out the "in-protocol reward" thing, maybe someone sees the idea and wants to cowork. maybe not. maybe it's a stupid idea.
[09:29:18] linzhi-sonia: any thoughts on CN-GPU?
[09:29:55] CN-GPU has one positive aspect - it wastes chip area to implement all 18 hash algorithms
[09:30:19] you will always hear roughly the same feedback from me:
[09:30:52] "This algorithm very different, it heavy use floating point operations to hurt FPGAs and general purpose CPUs"
[09:30:56] the problem is, if it's profitable for people to buy ASIC miners and mine, it's always more profitable for the manufacturer to not sell and mine themselves
[09:31:02] "hurt"
[09:31:07] what is the point of this?
[09:31:15] it totally doesn't work
[09:31:24] you are hurting noone, just demonstrating lack of ability to think
[09:31:41] what is better: algo designed for chip, or chip designed for algo?
[09:31:43] fireice does it on daily basis, CN-GPU is a joke
[09:31:53] tevador: that's not really true, especially in a market with such large price fluctuations as cryptocurrency
[09:32:12] it's far less risky to sell miners than mine with them and pray that price doesn't crash for next six months
[09:32:14] I think it's great that crypto has a nice group of asicmakers now, hw & sw will cowork well
[09:32:36] jwinterm yes, that's why they premine them and sell after
[09:32:41] PoW is about being thermodynamically and cryptographically provable
[09:32:45] premining with them is taking on that risk
[09:32:49] not "fork when we think there are asics"
[09:32:51] business is about risk minimization
[09:32:54] that's just fear-driven
[09:33:05] Inge-: that's roughly the feedback
[09:33:24] I'm not saying it hasn't happened, but I think it's not so simple as saying "it always happens"
[09:34:00] jwinterm: it has certainly happened on BTC. and also on XMR.
[09:34:19] ironically, please think about it: these kinds of algos indeed prove the limits of the chips they were designed for. but they don't prove that you cannot implement the same algo differently! cannot!
[09:34:26] Risk minimization is not starting a business at all.
[09:34:34] proof-of-gpu-limit. proof-of-cpu-limit.
[09:34:37] imagine you have a money printing machine, would you sell it?
[09:34:39] proves nothing for an ASIC :)
[09:35:05] linzhi-sonia: thanks. I dont think anyone believes you can't make a more efficient cn-gpu asic than a gpu - but that it would not be orders of magnitude faster...
[09:35:24] ok
[09:35:44] like I say. these algos are, that's really ironic, designed to prove the limitatios of a particular chip in mind of the designer
[09:35:50] exactly the wrong way round :)
[09:36:16] like the cache size in RandomX :)
[09:36:18] beautiful
[09:36:29] someone looked at GPU designs
[09:37:31] linzhi-sonia can you elaborate? Cache size in RandomX was selected to fit CPU cache
[09:37:52] yes
[09:38:03] too large for GPU
[09:38:11] as I said, we are designing the algorithm to exactly fit CPU capabilities, I do not claim an ASIC cannot be more efficient
[09:38:16] ok!
[09:38:29] when will you do the audit?
[09:38:35] will the results be published in a document or so?
[09:38:37] I claim that single-chip ASIC is not viable, though
[09:39:06] you guys are brave, noone disputes that. 3 anti-asic hardforks now!
[09:39:18] 4th one coming
[09:39:31] 3 forks were done not only for this
[09:39:38] they had scheduled updates in the first place
[09:48:10] Monero is the #1 anti-asic fighter
[09:48:25] Monero is #1 for a lot of reasons ;)
[09:48:40] It's the coin with the most hycs.
[09:48:55] mooooo
[09:59:06] sneaky integer overflow, bug squished
[10:38:00] p0nziph0ne ([email protected]/vpn/privateinternetaccess/p0nziph0ne) has joined #monero-pow
[11:10:53] The convo here is wild
[11:12:29] it's like geo-politics at the intersection of software and hardware manufacturing for thermoeconomic value.
[11:13:05] ..and on a Sunday.
[11:15:43] midipoet: hw and sw should work together and stop silly games to devalue each other. to outsiders this is totally not attractive.
[11:16:07] I appreciate the positive energy here to try to listen, learn, understand.
[11:16:10] that's a start
[11:16:48] <-- p0nziph0ne ([email protected]/vpn/privateinternetaccess/p0nziph0ne) has quit (Quit: Leaving)
[11:16:54] we won't do silly mining against xmr "community" wishes, but not because we couldn'd do it, but because it's the wrong direction in the long run, for both sides
[11:18:57] linzhi-sonia: I agree to some extent. Though, in reality, there will always be divergence between social worlds. Not every body has the same vision of the future. Reaching societal consensus on reality tomorrow is not always easy
[11:20:25] absolutely. especially at a time when there is so much profit to be made from divisiveness.
[11:20:37] someone will want to make that profit, for sure
[11:24:32] Yes. Money distorts.
[11:24:47] Or wealth...one of the two
[11:26:35] Too much physical money will distort rays of light passing close to it indeed.
submitted by jwinterm to Monero [link] [comments]

You can call you a Bitcoiner if you know/can explain these terms...

03/Jan/2009
10 Minutes
10,000 BTC Pizza
2016 Blocks
21 Million
210,000 Blocks
51% Attack
Address
Altcoin
Antonopoulos
Asic
Asic Boost
Base58
Batching
Bech32
Bit
Bitcoin Cash
Bitcoin Improvement Proposal (BIP)
Bitcoin SV
Bitmain
Block
Block height
Block reward
Blockchain
Blockexplorer
Bloom Filter
Brain Wallet
Buidl
Change Address
Child pays for parent (CPFP)
Coinbase (not the exchange)
CoinJoin
Coinmarketcap (CMC)
Colored Coin
Confirmation
Consensus
Custodial Wallet
Craig Wright
David Kleinman
Difficulty
Difficulty adjustment
Difficulty Target
Dogecoin
Dorian Nakamoto
Double spend
Elliptic Curve Digital Signature Algorithm (ECDSA)
Ethereum
Faketoshi
Fork
Full Node
Gavin Andresen
Genesis Block
Getting goxed
Halving
Hard Fork
Hardware Wallet
Hash
Hashing
Hierarchical Deterministic (HD) Wallet
Hodl
Hot Wallet
Initial Coin Offering (ICO)
Initial Exchange Offering (IEO)
Ledger
Light Node
Lightning
Litecoin
Locktime
Mainnet
Malleability
Master Private Key
Master Public Key
Master Seed
mBTC
Mempool
Merkle Tree
Mining
Mining Farm
Mining Pool
Mixing
MtGox
Multisig
Nonce
Not your keys,...
Opcode
Orphan block
P2PKH
P2SH
Paper Wallet
Peers
Pieter Wuille
Premining
Private key
Proof of Stake (PoS)
Proof of Work (PoW)
Pruning
Public key
Pump'n'Dump
Replace by Fee (RBF)
Ripemd160
Roger Ver
sat
Satoshi Nakamoto
Schnorr Signatures
Script
Segregated Witness (Segwit)
Sha256
Shitcoin
Sidechain
Signature
Signing
Simplified Payment Verification (SPV)
Smart Contract
Soft Fork
Stratum
Syncing
Testnet
Transaction
Transaction Fees
TransactionId (Txid)
Trezor
User Activated Soft Fork (UASF)
Utxo
Wallet Import Format (WIF)
Watch-Only Address
Whitepaper
List obviously not complete. Suggestions appreciated.
Refs:
https://bitcoin.org/en/developer-glossary https://en.bitcoin.it/wiki/Main_Page https://www.youtube.com/channel/UCgo7FCCPuylVk4luP3JAgVw https://www.youtube.com/useaantonop
submitted by PolaT1x to Bitcoin [link] [comments]

The Bitcoin Cash fork fiasco: a reorg or a 51 percent attack?

https://bravenewcoin.com/insights/the-bitcoin-cash-fiasco-a-reorg-or-a-51-percent-attack
interesting article on how this attack operated, when bitcoin cash upgraded with the abc fork which created the sv / bitcoincash divergance. in the abc upgrade there was an ability to return funds from addresses that were errenosly sent to segwit addresses and thus were not accesible since bch didn't have segwit.
there was an exploit of being able to see a secret on the blockchain ledger, it was a hash. it allowed a malicious actor to recover funds from segwit addresses. this allowed a nefarious actor to double spend on the segwit addresses as you could obtain the funds with the secret exposed on the block explorer.
the article goes into detail about what was occuring block per block. 2 large miners benevenoltly joined hash power to stop the attacker after they realised what was happening on the chain of another miner.
as per the title, this could have been a 51% attack, but miners colluded, due to centralisation of mining which is not what pow is about. so the fact that miners colluded to stop a double spend, raises questions on PoW working for bitcoin cash.
question:
wouldnt their issues largely be resolved if they changed from sha256 as the hashing algo? if changed it would prevent btc mining farms from mining the chain, giving stability in the network. something fpgas can mine easily enough so there isnt a drastic transition in hash power.
the problem with a large hash drop is that the block reward adjustment phase takes far too long i.e. the nounce level for hashing = reward. with bitcoin i think the nonce reevaluates based on hash level after 2 weeks in blocks with btc, not sure if its changed in bitcoin cash. doubt it
submitted by Neophyte- to CryptoTechnology [link] [comments]

A (hopefully mathematically neutral) comparison of Lightning network fees to Bitcoin Cash on-chain fees.

A side note before I begin
For context, earlier today, sherlocoin made a post on this sub asking if Lightning Network transactions are cheaper than on-chain BCH transactions. This user also went on to complain on /bitcoin that his "real" numbers were getting downvoted
I was initially going to respond to his post, but after I typed some of my response, I realized it is relevant to a wider Bitcoin audience and the level of analysis done warranted a new post. This wound up being the longest post I've ever written, so I hope you agree.
I've placed the TL;DR at the top and bottom for the simple reason that you need to prepare your face... because it's about to get hit with a formidable wall of text.
TL;DR: While Lightning node payments themselves cost less than on-chain BCH payments, the associated overhead currently requires a LN channel to produce 16 transactions just to break-even under ideal 1sat/byte circumstances and substantially more as the fee rate goes up.
Further, the Lightning network can provide no guarantee in its current state to maintain/reduce fees to 1sat/byte.

Let's Begin With An Ideal World
Lightning network fees themselves are indeed cheaper than Bitcoin Cash fees, but in order to get to a state where a Lightning network fee can be made, you are required to open a channel, and to get to a state where those funds are spendable, you must close that channel.
On the Bitcoin network, the minimum accepted fee is 1sat/byte so for now, we'll assume that ideal scenario of 1sat/byte. We'll also assume the open and close is sent as a simple native Segwit transaction with a weighted size of 141 bytes. Because we have to both open and close, this 141 byte fee will be incurred twice. The total fee for an ideal open/close transaction is 1.8¢
For comparison, a simple transaction on the BCH network requires 226 bytes one time. The minimum fee accepted next-block is 1sat/byte. At the time of writing an ideal BCH transaction fee costs ~ 0.11¢
This means that under idealized circumstances, you must currently make at least 16 transactions on a LN channel to break-even with fees
Compounding Factors
Our world is not ideal, so below I've listed compounding factors, common arguments, an assessment, and whether the problem is solvable.
Problem 1: Bitcoin and Bitcoin Cash prices are asymmetrical.
Common arguments:
BTC: If Bitcoin Cash had the same price, the fees would be far higher
Yes, this is true. If Bitcoin Cash had the same market price as Bitcoin, our ideal scenario changes substantially. An open and close on Bitcoin still costs 1.8¢ while a simple Bitcoin Cash transaction now costs 1.4¢. The break-even point for a Lightning Channel is now only 2 transactions.
Is this problem solvable?
Absolutely.
Bitcoin Cash has already proposed a reduction in fees to 1sat for every 10 bytes, and that amount can be made lower by later proposals. While there is no substantial pressure to implement this now, if Bitcoin Cash had the same usage as Bitcoin currently does, it is far more likely to be implemented. If implemented at the first proposed reduction rate, under ideal circumstances, a Lightning Channel would need to produce around 13 transactions for the new break even.
But couldn't Bitcoin reduce fees similarly
The answer there is really tricky. If you reduce on-chain fees, you reduce the incentive to use the Lightning Network as the network becomes more hospitable to micropaments. This would likely increase the typical mempool state and decrease the Lightning Channel count some. The upside is that when the mempool saturates with low transaction fees, users are then re-incentivized to use the lightning network after the lowes fees are saturated with transactions. This should, in theory, produce some level of a transaction fee floor which is probably higher on average than 0.1 sat/byte on the BTC network.
Problem 2: This isn't an ideal world, we can't assume 1sat/byte fees
Common arguments:
BCH: If you tried to open a channel at peak fees, you could pay $50 each way
BTC: LN wasn't implemented which is why the fees are low now
Both sides have points here. It's true that if the mempool was in the same state as it was in December of 2017, that a user could have potentially been incentivized to pay an open and close channel fee of up to 1000 sat/byte to be accepted in a reasonable time-frame.
With that being said, two factors have resulted in a reduced mempool size of Bitcoin: Increased Segwit and Lightning Network Usage, and an overall cooling of the market.
I'm not going to speculate as to what percentage of which is due to each factor. Instead, I'm going to simply analyze mempool statistics for the last few months where both factors are present.
Let's get an idea of current typical Bitcoin network usage fees by asking Johoe quick what the mempool looks like.
For the last few months, the bitcoin mempool has followed almost the exact same pattern. Highest usage happens between 10AM and 3PM EST with a peak around noon. Weekly, usage usually peaks on Tuesday or Wednesday with enough activity to fill blocks with at least minimum fee transactions M-F during the noted hours and usually just shy of block-filling capacity on Sat and Sun.
These observations can be additionally evidenced by transaction counts on bitinfocharts. It's also easier to visualize on bitinfocharts over a longer time-frame.
Opening a channel
Under pre-planned circumstances, you can offload channel creation to off-peak hours and maintain a 1sat/byte rate. The primary issue arises in situations where either 1) LN payments are accepted and you had little prior knowledge, or 2) You had a previous LN pathway to a known payment processor and one or more previously known intermediaries are offline or otherwise unresponsive causing the payment to fail.
Your options are:
A) Create a new LN channel on-the-spot where you're likely to incur current peak fee rates of 5-20sat/byte.
B) Create an on-chain payment this time and open a LN channel when fees are more reasonable.
C) Use an alternate currency for the transaction.
There is a fundamental divide among the status of C. Some people view Bitcoin as (primarily) a storage of value, and thus as long as there are some available onramps and offramps, the currency will hold value. There are other people who believe that fungibility is what gives cryptocurrency it's value and that option C would fundamentally undermine the value of the currency.
I don't mean to dismiss either argument, but option C opens a can of worms that alone can fill economic textbooks. For the sake of simplicity, we will throw out option C as a possibility and save that debate for another day. We will simply require that payment is made in crypto.
With option B, you would absolutely need to pay the peak rate (likely higher) for a single transaction as a Point-of-Sale scenario with a full mempool would likely require at least one confirm and both parties would want that as soon as possible after payment. It would not be unlikely to pay 20-40 sat/byte on a single transaction and then pay 1sat/byte for an open and close to enable LN payments later. Even in the low end, the total cost is 20¢ for on-chain + open + close.
With present-day-statistics, your LN would have to do 182 transactions to make up for the one peak on-chain transaction you were forced to do.
With option A, you still require one confirm. Let's also give the additional leeway that in this scenario you have time to sit and wait a couple of blocks for your confirm before you order / pay. You can thus pay peak rates alone and not peak + ensure next block rates. This will most likely be in the 5-20 sat/byte range. With 5sat/byte open and 1sat/byte close, your LN would have to do 50 transactions to break even
In closing, fees are incurred by the funding channel, so there could be scenarios where the receiving party is incentivized to close in order to spend outputs and the software automatically calculates fees based on current rates. If this is the case, the receiving party could incur a higher-than-planned fee to the funding party.
With that being said, any software that allows the funding party to set the fee beforehand would avoid unplanned fees, so we'll assume low fees for closing.
Is this problem solvable?
It depends.
In order to avoid the peak-fee open/close ratio problem, the Bitcoin network either needs to have much higher LN / Segwit utilization, or increase on-chain capacity. If it gets to a point where transactions stack up, users will be required to pay more than 1sat/byte per transaction and should expect as much.
Current Bitcoin network utilization is close enough to 100% to fill blocks during peak times. I also did an export of the data available at Blockchair.com for the last 3000 blocks which is approximately the last 3 weeks of data. According to their block-weight statistics, The average Bitcoin block is 65.95% full. This means that on-chain, Bitcoin can only increase in transaction volume by around 50% and all other scaling must happen via increased Segwit and LN use.
Problem 3: You don't fully control your LN channel states.
Common arguments:
BCH: You can get into a scenario where you don't have output capacity and need to open a new channel.
BCH: A hostile actor can cause you to lose funds during a high-fee situation where a close is forced.
BTC: You can easily re-load your channel by pushing outbound to inbound.
BCH: You can't control whether nodes you connect to are online or offline.
There's a lot to digest here, but LN is essentially a 2-way contract between 2 parties. Not only does the drafting party pay the fees as of right now, but connected 3rd-parties can affect the state of this contract. There are some interesting scenarios that develop because of it and you aren't always in full control of what side.
Lack of outbound capacity
First, it's true that if you run out of outbound capacity, you either need to reload or create a new channel. This could potentially require 0, 1, or 2 additional on-chain transactions.
If a network loop exists between a low-outbound-capacity channel and yourself, you could push transactional capacity through the loop back to the output you wish to spend to. This would require 0 on-chain transactions and would only cost 1 (relatively negligible) LN fee charge. For all intents and purposes... this is actually kind of a cool scenario.
If no network loop exists from you-to-you, things get more complex. I've seen proposals like using Bitrefill to push capacity back to your node. In order to do this, you would have an account with them and they would lend custodial support based on your account. While people opting for trustless money would take issue in 3rd party custodians, I don't think this alone is a horrible solution to the LN outbound capacity problem... Although it depends on the fee that bitrefill charges to maintain an account and account charges could negate the effectiveness of using the LN. Still, we will assume this is a 0 on-chain scenario and would only cost 1 LN fee which remains relatively negligible.
If no network loop exists from you and you don't have a refill service set up, you'll need at least one on-chain payment to another LN entity in exchange for them to push LN capacity to you. Let's assume ideal fee rates. If this is the case, your refill would require an additional 7 transactions for that channel's new break-even. Multiply that by number of sat/byte if you have to pay more.
Opening a new channel is the last possibility and we go back to the dynamics of 13 transactions per LN channel in the ideal scenario.
Hostile actors
There are some potential attack vectors previously proposed. Most of these are theoretical and/or require high fee scenarios to come about. I think that everyone should be wary of them, however I'm going to ignore most of them again for the sake of succinctness.
This is not to be dismissive... it's just because my post length has already bored most casual readers half to death and I don't want to be responsible for finishing the job.
Pushing outbound to inbound
While I've discussed scenarios for this push above, there are some strange scenarios that arise where pushing outbound to inbound is not possible and even some scenarios where a 3rd party drains your outbound capacity before you can spend it.
A while back I did a testnet simulation to prove that this scenario can and will happen it was a post response that happened 2 weeks after the initial post so it flew heavily under the radar, but the proof is there.
The moral of this story is in some scenarios, you can't count on loaded network capacity to be there by the time you want to spend it.
Online vs Offline Nodes
We can't even be sure that a given computer is online to sign a channel open or push capacity until we try. Offline nodes provide a brick-wall in the pathfinding algorithm so an alternate route must be found. If we have enough channel connectivity to be statistically sure we can route around this issue, we're in good shape. If not, we're going to have issues.
Is this problem solvable?
Only if the Lightning network can provide an (effectively) infinite amount of capacity... but...
Problem 4: Lightning Network is not infinite.
Common arguments:
BTC: Lightning network can scale infinitely so there's no problem.
Unfortunately, LN is not infinitely scalable. In fact, finding a pathway from one node to another is roughly the same problem as the traveling salesman problem. Dijkstra's algorithm which is a problem that diverges polynomially. The most efficient proposals have a difficulty bound by O(n^2).
Note - in the above I confused the complexity of the traveling salesman problem with Dijkstra when they do not have the same bound. With that being said, the complexity of the LN will still diverge with size
In lay terms, what that means is every time you double the size of the Lightning Network, finding an indirect LN pathway becomes 4 times as difficult and data intensive. This means that for every doubling, the amount of traffic resulting from a single request also quadruples.
You can potentially temporarily mitigate traffic by bounding the number of hops taken, but that would encourage a greater channel-per-user ratio.
For a famous example... the game "6 degrees of Kevin Bacon" postulates that Kevin Bacon can be connected by co-stars to any movie by 6 degrees of separation. If the game is reduced to "4 degrees of Kevin Bacon," users of this network would still want as many connections to be made, so they'd be incentivized to hire Kevin Bacon to star in everything. You'd start to see ridiculous mash-ups and reboots just to get more connectivity... Just imagine hearing Coming soon - Kevin Bacon and Adam Sandlar star in "Billy Madison 2: Replace the face."
Is this problem solvable?
Signs point to no.
So technically, if the average computational power and network connectivity can handle the problem (the number of Lightning network channels needed to connect the world)2 in a trivial amount of time, Lightning Network is effectively infinite as the upper bound of a non-infinite earth would limit time-frames to those that are computationally feasible.
With that being said, BTC has discussed Lightning dev comments before that estimated a cap of 10,000 - 1,000,000 channels before problems are encountered which is far less than the required "number of channels needed to connect the world" level.
In fact SHA256 is a newer NP-hard problem than the traveling saleseman problem. That means that statistically, and based on the amount of review that has been given to each problem, it is more likely that SHA256 - the algorithm that lends security to all of bitcoin - is cracked before the traveling salesman problem is. Notions that "a dedicated dev team can suddenly solve this problem, while not technically impossible, border on statistically absurd.
Edit - While the case isn't quite as bad as the traveling salesman problem, the problem will still diverge with size and finding a more efficient algorithm is nearly as unlikely.
This upper bound shows that we cannot count on infinite scalability or connectivity for the lightning network. Thus, there will always be on-chain fee pressure and it will rise as the LN reaches it's computational upper-bound.
Because you can't count on channel states, the on-chain fee pressure will cause typical sat/byte fees to raise. The higher this rate, the more transactions you have to make for a Lightning payment open/close operation to pay for itself.
This is, of course unless it is substantially reworked or substituted for a O(log(n))-or-better solution.
Finally, I'd like to add, creating an on-chain transaction is a set non-recursive, non looping function - effectively O(1), sending this transaction over a peer-to-peer network is bounded by O(log(n)) and accepting payment is, again, O(1). This means that (as far as I can tell) on-chain transactions (very likely) scale more effectively than Lightning Network in its current state.
Additional notes:
My computational difficulty assumptions were based on a generalized, but similar problem set for both LN and on-chain instances. I may have overlooked additional steps needed for the specific implementation, and I may have overlooked reasons a problem is a simplified version requiring reduced computational difficulty.
I would appreciate review and comment on my assumptions for computational difficulty and will happily correct said assumptions if reasonable evidence is given that a problem doesn't adhere to listed computational difficulty.
TL;DR: While Lightning node payments themselves cost less than on-chain BCH payments, the associated overhead currently requires a LN channel to produce 16 transactions just to break-even under ideal 1sat/byte circumstances and substantially more as the fee rate goes up.
Further, the Lightning network can provide no guarantee in its current state to maintain/reduce fees to 1sat/byte.
submitted by CaptainPatent to btc [link] [comments]

Why Dogecoin When There is Bitcoin and Litecoin? This is Why...

In the past, I tried to move some bitcoin around, wow, what a hassle that was. My coins got stuck because I did not pay a high enough fee. And then I had to research on how to make the fee higher and resubmit the payment. Only to find out the cost of sending the transaction was now going to cost several dollars. This is where doge excels, you can send payments for only a fraction of a penny and a fraction of the time that it takes to send via bitcoin and litecoin. I suggest you make a small investment in all coins(Doge, litecoin, bitcoin) and try moving them around from wallet to wallet. You'll see that Doge is truly a rocket ship when compared to others.
Here's a list of reasons I love Doge:
It's easy to see, Doge does everything better then bitcoin and litecoin. We are faster, cheaper, and even more friendlier. We love our coin and we love our community. This is one of the most altruistic communities I have ever seen.
There is no doubt that bitcoin and litecoin are great. All three coins(Dogecoin, Litecoin, Bitcoin) are built on the same exact technology. It's just that Dogecoin came a little bit later then bitcoin and litecoin, so we were able to fine tune our coin with the correct specifications to make it a more exceptional coin. I believe all three coins are great and there is a place for all of us here, I just feel that doge is greater due to our 1 minute block time and the awesome community and dev team backing it.
Make no mistake, we do digital currency right.
TLDR: With 1 minute block times, Dogecoin is faster, cheaper, and a much better digital currency then bitcoin and litecoin. Basically, we are no joke.
submitted by shibedogeman to dogecoin [link] [comments]

Here is why BCH is Bitcoin despite the fact that BTC has more accumulative PoW

In a conversation I had with cgminer yesterday ( https://www.reddit.com/btc/comments/98jnz5/next_time_someone_uses_bcash_send_them_this_magic/e4gy93e ) I realised that many victims of the Bitcoin Core cult have been propagandised into believing that the BTC chain is Bitcoin because it has the most accumulative PoW. I explained to cgminer why this is not the case and thought I'd share my explanation further so it gets more exposure and more critique.
This is what I told cgminer:
"Bitcoin" refers to the chain, starting at the genesis block, which implements a trustless, permissionless, p2p, electronic cash system (as stated in the white paper). In the event that there are two or more chains that satisfy that description, then it is the chain which has the most accumulative PoW that is Bitcoin.
BCH satisfies that description above. BTC does not satisfy that description above because it does not implement a trustless, permissionless, p2p, electronic cash system. There is no other chain which satisfies the description above with more accumulative PoW than BCH; as such, BCH is Bitcoin.
To help illustrate my point imagine this: imagine that Steemit was created by forking the original Bitcoin codebase and the original Bitcoin blockchain. Also imagine that Steemit mining was performed using double-sha256 (same as BTC & BCH). Let us say that the Steemit codebase only allows for transactions related to creating and tipping multimedia content. We would say that Steemit is not a cash system. The Steemit coin would be more like a token that can only be used for restricted purposes. Now let's say that Steemit got so popular and so valuable that the majority of double-sha256 miners switched to mining it. Eventually Steemit would have the most accumulative proof of work overtaking both BCH and BTC. If this occurred, would we say that Steemit is Bitcoin? No. Why not? Because Steemit does not implement a trustless, permissionless, p2p, electronic cash system. For this exact same reason, BTC is also not Bitcoin. BTC does not implement a trustless, permissionless, p2p, electronic cash system. The group that controls the BTC chain now and its supporters have been adamant for years that BTC is not a cash system to pay for your morning coffee with; it is purely a settlement system for high-value transactions and a store of value.
Let me know what you think.
submitted by hapticpilot to btc [link] [comments]

What We Need to Know about Proof of Work (PoW)

We've had a lot of discussion of PoW and ASIC-resistance over the past couple months. I wanted to consolidate it all into one place for easier review.
The CryptoNote developers explicitly talked about this in the CryptoNote white paper. (In short, it's bad for network security if cheap ASICs exist that are more powerful than GPUs and high end CPUs.) Writing in 2013, it was already obvious that Bitcoin's SHA256 PoW was broken. They designed CryptoNight to address shortcomings in Bitcoin's PoW algorithm but unfortunately, as time has revealed, their analysis of why Bitcoin's PoW is weak and what makes a good PoW algorithm fell short.
The fundamental flaw that these guys all overlooked is that Proof of Work involves two distinct elements and both Bitcoin and CryptoNote tried to address both requirements with a single algorithm. I.e., there is the actual work that must be done, and there is the proof that the work was performed. Both Bitcoin and CryptoNote used cryptographic hashes to address both requirements, but cryptohashes are only good for proof - they're used in digital signatures to verify that some piece of data is authentic. But that's all they're good for.
Cryptographic hashes are intentionally designed to be efficient to implement and fast to execute. They're designed to be lightweight and high throughput. But the Work you need to secure a network must be hard. Cryptographic hashes are trivially easy to implement in hardware because they use a simple set of operations, sequenced in a straightforward order. They're the ideal algorithms for ASIC implementation.
People overlook this aspect of hardness all the time. They think "Bitcoin is secured by trillions of hashes/sec, so of course it's secure" - but that's not automatically true. Work is what secures the network, and that means energy - electrical energy, in this case. The hash rate is only a proxy for work, and it's a poor one at best. E.g. if you have a network secured by 1 trillion SHA256 hashes/sec at a cost of 1 microwatt per hash or a network secured by 10 billion Argon2 hashes/sec at a cost of 1 watt per hash, the Argon2 network is actually more secure.
A viable PoW algorithm has to be computationally hard. Not just "memory hard" as CryptoNight claimed - memory densities double every 18 months. But transistor speeds have flatlined. So this is the first hint - you need something that's actually difficult to compute. Cryptohashes are easy to compute; they're intentionally designed to be easy.
ASICs and GPUs outrun CPUs because they have hundreds or thousands of small/simple compute nodes running in parallel. The more complicated the computation, the larger a compute node you need to successfully execute it - which means, the more expensive the ASIC, and the fewer compute nodes can fit on a chip. So again, we're aiming for computational complexity. More to the point - we're aiming for algorithms that leverage the general-purpose design of CPUs.
ASICs are fast because they're hardwired to do a single task. CPUs are slow because they're general purpose - instead of being hardwired for any particular function, they read and interpret a list of instructions that tell them which function to perform. So the obvious way to put the brakes on ASICs is to force them to do more than a single task.
A few multi-algorithm PoW systems have already been designed - they all still fail because the individual algorithms are still cryptohashes, and each one is still easy to implement. If your PoW uses 12 different hash algorithms, big deal, they just design an ASIC with all 12 algorithms on-chip.
The way forward as I see it is to use a PoW with completely randomly generated code, so that it's impossible for an ASIC to hardwire all of the algorithms. At that point the ASIC folks will be required to build an actual CPU into their chips. And that will bring their speed back down to earth.
Note that their on-chip CPU still doesn't need to be as full-featured as a regular CPU, and the simpler they can make it, the cheaper it is to build and the faster it will run. So it's important that the randomly generated code is also inherently complex, using a wide variety of operations and data types. It's also important that the code uses a stable and mature programming language. Something that's too new and experimental may have many holes waiting to be discovered, or unexpected optimizations that allow some implementations to have unfair advantage.
The PRNG used to randomize the code needs to be of high quality, so that it doesn't frequently produce repeated sequences. Anything that occurs frequently can be condensed into a hardware circuit.
My approach, based on this knowledge, is to generate random Javascript. The PRNG I've used is an optimized variant of Mersenne Twister. This PRNG is not a cryptographically secure generator but it doesn't need to be. On the other hand, it has been heavily studied and heavily optimized over many years so it's unlikely for anyone to develop any shortcuts in implementing it.
I've chosen to use Javascript because it's a mature language and there are a number of competing Javascript engines out there, all heavily optimized. The likelihood of significant new optimizations being discovered is low. (And there's a side-benefit - if anyone does discover a new optimization, it may benefit the entire computing community.)
A running proof of concept is available on my github page github.com/hyc/randprog
The blockhashing blob + nonce are fed in as the seed that initializes the PRNG. (Just like in CryptoNight, it's first run thru Keccak, to ensure the bits of the nonce are evenly distributed across the seed.) The source code of the generated program, as well as the output of the generated program, are crunched with Keccak and one of 4 randomly selected hash algorithms (Blake256, Groestl, JH, and Skein) just like CryptoNight. Using the cryptohashes proves that a piece of work is authentic - the hashes will not match if the wrong source code was generated, or it wasn't executed correctly. But aside from proving authenticity, the cryptohashes play no other role.
Kudos to conniedoit for making the initial suggestion that led down this path. https://www.reddit.com/Monero/comments/84y3ci/help_new_funky_pow_idea_against_asics_and_for_the/
submitted by hyc_symas to Monero [link] [comments]

An extensive list of blockchain courses, resources and articles to help you get a job working with blockchain.

u/Maximus_no and me spent some time at work collecting and analyzing learning material for blockchain development. The list contains resources for developers, as well as business analysts/consultants looking to learn more about blockchain use-cases and solutions.

Certifications and Courses

IIB Council
Link to course: IIB council : Certified Blockchain Professional
C|BP is an In-Depth, Industry Agnostic, Hands-On Training and Certification Course specifically tailored for Industry Professionals and Developers interested in implementing emerging technologies in the Data-Driven Markets and Digitized Economies.
The IIB Council Certified Blockchain Professional (C|BP) Course was developed to help respective aspiring professionals gain excessive knowledge in Blockchain technology and its implication on businesses.
WHO IS IT FOR:

Professionals

C|BP is developed in line with the latest industry trends to help current and aspiring Professionals evolve in their career by implementing the latest knowledge in blockchain technology. This course will help professionals understand the foundation of Blockchain technology and the opportunities this emerging technology is offering.

Developers

If you are a Developer and you are willing to learn blockchain technology this course is for you. You will learn to build and model Blockchain solutions and Blockchain-based applications for enterprises and businesses in multiple Blockchain Technologies.

Certified Blockchain Business Foundations (CBBF)

This exam is designed for non-technical business professionals who require basic knowledge about Blockchain and how it will be executed within an organization. This exam is NOT appropriate for technology professionals seeking to gain deeper understanding of Blockchain technology implementation or programming.

A person who holds this certification demonstrates their knowledge of:

· What is Blockchain? (What exactly is it?)
· Non-Technical Technology Overview (How does it work?)
· Benefits of Blockchain (Why should anyone consider this?)
· Use Cases (Where and for what apps is it appropriate?)
· Adoption (Who is using it and for what?)
· Future of Blockchain (What is the future?)

Certified Blockchain Solution Architect (CBSA)

A person who holds this certification demonstrates their ability to:

· Architect blockchain solutions
· Work effectively with blockchain engineers and technical leaders
· Choose appropriate blockchain systems for various use cases
· Work effectively with both public and permissioned blockchain systems

This exam will prove that a student completely understands:

· The difference between proof of work, proof of stake, and other proof systems and why they exist
· Why cryptocurrency is needed on certain types of blockchains
· The difference between public, private, and permissioned blockchains
· How blocks are written to the blockchain
· Where cryptography fits into blockchain and the most commonly used systems
· Common use cases for public blockchains
· Common use cases for private & permissioned blockchains
· What is needed to launch your own blockchain
· Common problems & considerations in working with public blockchains
· Awareness of the tech behind common blockchains
· When is mining needed and when it is not
· Byzantine Fault Tolerance
· Consensus among blockchains
· What is hashing
· How addresses, public keys, and private keys work
· What is a smart contract
· Security in blockchain
· Brief history of blockchain
· The programming languages of the most common blockchains
· Common testing and deployment practices for blockchains and blockchain-based apps

Certified Blockchain Developer - Ethereum (CBDE)

A person who holds this certification demonstrates their ability to:

· Plan and prepare production ready applications for the Ethereum blockchain
· Write, test, and deploy secure Solidity smart contracts
· Understand and work with Ethereum fees
· Work within the bounds and limitations of the Ethereum blockchain
· Use the essential tooling and systems needed to work with the Ethereum ecosystem

This exam will prove that a student completely understands how to:

· Implement web3.js
· Write and compile Solidity smart contracts
· Create secure smart contracts
· Deploy smart contracts both the live and test Ethereum networks
· Calculate Ethereum gas costs
· Unit test smart contracts
· Run an Ethereum node on development machines

Princeton: Sixty free lectures from Princeton on bitcoin and cryptocurrencies. Avg length ~15 mins

Basic course with focus on Bitcoin. After this course, you’ll know everything you need to be able to separate fact from fiction when reading claims about Bitcoin and other cryptocurrencies. You’ll have the conceptual foundations you need to engineer secure software that interacts with the Bitcoin network. And you’ll be able to integrate ideas from Bitcoin in your own projects.

MIT : BLOCKCHAIN TECHNOLOGIES: BUSINESS INNOVATION AND APPLICATION

· A mid / basic understanding of blockchain technology and its long-term implications for business, coupled with knowledge of its relationship to other emerging technologies such as AI and IoT
· An economic framework for identifying blockchain-based solutions to challenges within your own context, guided by the knowledge of cryptoeconomics expert Christian Catalini
· Recognition of your newfound blockchain knowledge in the form of a certificate of completion from the MIT Sloan School of Management — one of the world’s leading business schools
Orientation Module: Welcome to Your Online Campus
Module 1: An introduction to blockchain technology
Module 2: Bitcoin and the curse of the double-spending problem
Module 3: Costless verification: Blockchain technology and the last mile problem
Module 4: Bootstrapping network effects through blockchain technology and cryptoeconomics
Module 5: Using tokens to design new types of digital platforms
Module 6: The future of blockchain technology, AI, and digital privacy

Oxford Blockchain Strategy Programme

· A mid / basic understanding of what blockchain is and how it works, as well as insights into how it will affect the future of industry and of your organization.
· The ability to make better strategic business decisions by utilizing the Oxford Blockchain Strategic framework, the Oxford Blockchain Regulation framework, the Oxford Blockchain Ecosystem map, and drawing on your knowledge of blockchain and affiliated industries and technologies.
· A certificate of attendance from Oxford Saïd as validation of your newfound blockchain knowledge and skills, as well as access to a global network of like-minded business leaders and innovators.
Module 1: Understanding blockchain
Module 2: The blockchain ecosystem
Module 3: Innovations in value transfer
Module 4: Decentralized apps and smart contracts
Module 5: Transforming enterprise business models
Module 6: Blockchain frontiers

Resources and Articles

Introduction to Distributed Ledger Technologies (DLT) https://www.ibm.com/developerworks/cloud/library/cl-blockchain-basics-intro-bluemix-trs/
Tomas’s Personal Favourite: 150+ Resources for going from web-dev to blockchain engineer https://github.com/benstew/blockchain-for-software-engineers
Hyperledger Frameworks Hyperledger is widely regarded as the most mature open-source framework for building private & permissioned blockchains.
Tutorials: https://www.hyperledger.org/resources/training
R3 Corda Open-source developer frameworks for building private, permissioned blockchains. A little better than Hyperledger on features like privacy and secure channels. Used mostly in financial applications.
Ethereum, Solidity, dApps and Smart-Contracts
Ethereum & Solidity Course (favourite): https://www.udemy.com/ethereum-and-solidity-the-complete-developers-guide/
An Introduction to Ethereum’s Token Standards: https://medium.com/coinmonks/anatomy-of-an-erc-an-exhaustive-survey-8bc1a323b541
How To Create Your First ERC20 Token: https://medium.com/bitfwd/how-to-do-an-ico-on-ethereum-in-less-than-20-minutes-a0062219374
Ethereum Developer Tools [Comprehensive List]: https://github.com/ConsenSys/ethereum-developer-tools-list/blob/masteREADME.md
CryptoZombies – Learn to code dApps through game-development: https://cryptozombies.io/
Intro to Ethereum Development: https://hackernoon.com/ethereum-development-walkthrough-part-1-smart-contracts-b3979e6e573e
Notes from Consensys Academy Participant (free): https://github.com/ScottWorks/ConsenSys-Academy-Notes
AWS Ethereum Templates: https://aws.amazon.com/blogs/aws/get-started-with-blockchain-using-the-new-aws-blockchain-templates/
Create dApps with better user-experience: https://blog.hellobloom.io/how-to-make-a-user-friendly-ethereum-dapp-5a7e5ea6df22
Solidity YouTube Course: https://www.youtube.com/channel/UCaWes1eWQ9TbzA695gl_PtA
[UX &UI] Designing a decentralized profile dApp: https://uxdesign.cc/designing-a-decentralized-profile-dapp-ab12ead4ab56
Scaling Solutions on Ethereum: https://media.consensys.net/the-state-of-scaling-ethereum-b4d095dbafae
Different Platforms for dApps and Smart-Contracts
While Ethereum is the most mature dApp framework with both the best developer tools, resources and community, there are other public blockchain platforms. Third generation blockchains are trying to solve Ethereum’s scaling and performance issues. Here is an overview of dApp platforms that can be worth looking into:
NEO - https://neo.org/ The second most mature dApp platform. NEO has better scalability and performance than Ethereum and has 1’000 TPS to ETH’s 15 by utilizing a dBFT consensus algorithm. While better infrastructure, NEO does not have the maturity of Ethereum’s developer tools, documentation and community.
A writeup on why a company chose to develop on NEO and not Ethereum: https://medium.com/orbismesh/why-we-chose-neo-over-ethereum-37fc9208ffa0
Cardano - https://www.cardano.org/en/home/ While still in alpha with a long and ambitious roadmap ahead of it, Cardano is one of the most anticipated dApp platforms out there. IOHK, the research and engineering company that maintains Cardano, has listed a lot of great resources and scientific papers that is worth looking into.
An Intro to Cardano: https://hackernoon.com/cardano-ethereum-and-neo-killer-or-overhyped-and-overpriced-8fcd5f8abcdf
IOHK Scientific Papers - https://iohk.io/research/papers/
Stellar - https://www.stellar.org/ If moving value fast from one party to another by using smart-contracts is the goal, Stellar Lumens is your platform. Initially as an open-source fork from Ripple, Stellar has become one of the mature frameworks for financial applications. Stellar’s focus lies in interoperability with legacy financial systems and cheap/fast value transfer. It’s smart-contract capability is rather limited in comparison to Ethereum and HyperLedger, so take that in consideration.
Ripplewww.ripple.com Ripple and its close cousin, Stellar, is two of the most well-known cryptocurrencies and DLT frameworks meant for the financial sector. Ripple enables instant settlement between banks for international transactions.

Consensus Algorithms

[Proof of Work] - very short, cuz it's well-known.
[1] Bitcoin - to generate a new block miner must generate hash of the new block header that is in line with given requirements.
Others: Ethereum, Litecoin etc.
[Hybrid of PoW and PoS]
[2] Decred - hybrid of “proof of work” and “proof of stake”. Blocks are created about every 5 minutes. Nodes in the network looking for a solution with a known difficulty to create a block (PoW). Once the solution is found it is broadcast to the network. The network then verifies the solution. Stakeholders who have locked some DCR in return for a ticket* now have the chance to vote on the block (PoS). 5 tickets are chosen pseudo-randomly from the ticket pool and if at least 3 of 5 vote ‘yes’ the block is permanently added to the blockchain. Both miners and voters are compensated with DCR : PoS - 30% and PoW - 60% of about 30 new Decred issued with a block. * 1 ticket = ability to cast 1 vote. Stakeholders must wait an average of 28 days (8,192 blocks) to vote their tickets.
[Proof of Stake]
[3] Nxt - The more tokens are held by account, the greater chance that account will earn the right to generate a block. The total reward received as a result of block generation is the sum of the transaction fees located within the block. Three values are key to determining which account is eligible to generate a block, which account earns the right to generate a block, and which block is taken to be the authoritative one in times of conflict: base target value, target value and cumulative difficulty. Each block on the chain has a generation signature parameter. To participate in the block's forging process, an active account digitally signs the generation signature of the previous block with its own public key. This creates a 64-byte signature, which is then hashed using SHA256. The first 8 bytes of the resulting hash are converted to a number, referred to as the account hit. The hit is compared to the current target value(active balance). If the computed hit is lower than the target, then the next block can be generated.
[4] Peercoin (chain-based proof of stake) - coin age parameter. Hybrid PoW and PoS algorithm. The longer your Peercoins have been stationary in your account (to a maximum of 90 days), the more power (coin age) they have to mint a block. The act of minting a block requires the consumption of coin age value, and the network determines consensus by selecting the chain with the largest total consumed coin age. Reward - minting + 1% yearly.
[5] Reddcoin (Proof of stake Velocity) - quite similar to Peercoin, difference: not linear coin-aging function (new coins gain weight quickly, and old coins gain weight increasingly slowly) to encourage Nodes Activity. Node with most coin age weight have a bigger chance to create block. To create block Node should calculate right hash. Block reward - interest on the weighted age of coins/ 5% annual interest in PoSV phase.
[6] Ethereum (Casper) - uses modified BFT consensus. Blocks will be created using PoW. In the Casper Phase 1 implementation for Ethereum, the “proposal mechanism" is the existing proof of work chain, modified to have a greatly reduced block reward. Blocks will be validated by set of Validators. Block is finalised when 2/3 of validators voted for it (not the number of validators is counted, but their deposit size). Block creator rewarded with Block Reward + Transaction FEES.
[7] Lisk (Delegated Proof-of-stake) - Lisk stakeholders vote with vote transaction (the weight of the vote depends on the amount of Lisk the stakeholder possess) and choose 101 Delegates, who create all blocks in the blockchain. One delegate creates 1 block within 1 round (1 round contains 101 blocks) -> At the beginning of each round, each delegate is assigned a slot indicating their position in the block generation process -> Delegate includes up to 25 transactions into the block, signs it and broadcasts it to the network -> As >51% of available peers agreed that this block is acceptable to be created (Broadhash consensus), a new block is added to the blockchain. *Any account may become a delegate, but only accounts with the required stake (no info how much) are allowed to generate blocks. Block reward - minted Lisks and transaction fees (fees for all 101 blocks are collected firstly and then are divided between delegates). Blocks appears every 10 sec.
[8] Cardano (Ouroboros Proof of Stake) - Blocks(slots) are created by Slot Leaders. Slot Leaders for N Epoch are chosen during n-1 Epoch. Slot Leaders are elected from the group of ADA stakeholders who have enough stake. Election process consist of 3 phases: Commitment phase: each elector generates a random value (secret), signs it and commit as message to network (other electors) saved in to block. -> Reveal phase: Each elector sends special value to open a commitment, all this values (opening) are put into the block. -> Recovery phase: each elector verifies that commitments and openings match and extracts the secrets and forms a SEED (randomly generated bytes string based on secrets). All electors get the same SEED. -> Follow the Satoshi algorithm : Elector who have coin which corresponded to SEED become a SLOT LEADER and get a right to create a block. Slot Leader is rewarded with minted ADA and transactions Fee.
[9] Tezos (Proof Of Stake) - generic and self-amending crypto-ledger. At the beginning of each cycle (2048 blocks), a random seed is derived from numbers that block miners chose and committed to in the penultimate cycle, and revealed in the last. -> Using this random seed, a follow the coin strategy (similar to Follow The Satoshi) is used to allocate mining rights and signing rights to stakeholders for the next cycle*. -> Blocks are mined by a random stakeholder (the miner) and includes multiple signatures of the previous block provided by random stakeholders (the signers). Mining and signing both offer a small reward but also require making a one cycle safety deposit to be forfeited in the event of a double mining or double signing.
· the more coins (rolls) you have - the more your chance to be a minesigner.
[10] Tendermint (Byzantine Fault Tolerance) - A proposal is signed and published by the designated proposer at each round. The proposer is chosen by a deterministic and non-choking round robin selection algorithm that selects proposers in proportion to their voting power. The proposer create the block, that should be validated by >2/3 of Validators, as follow: Propose -> Prevote -> Precommit -> Commit. Proposer rewarded with Transaction FEES.
[11] Tron (Byzantine Fault Tolerance) - This blockhain is still on development stage. Consensus algorithm = PoS + BFT (similar to Tendermint): PoS algorithm chooses a node as Proposer, this node has the power to generate a block. -> Proposer broadcasts a block that it want to release. -> Block enters the Prevote stage. It takes >2/3 of nodes' confirmations to enter the next stage. -> As the block is prevoted, it enters Precommit stage and needs >2/3 of node's confirmation to go further. -> As >2/3 of nodes have precommited the block it's commited to the blockchain with height +1. New blocks appears every 15 sec.
[12] NEO (Delegated Byzantine Fault Tolerance) - Consensus nodes* are elected by NEO holders -> The Speaker is identified (based on algorithm) -> He broadcasts proposal to create block -> Each Delegate (other consensus nodes) validates proposal -> Each Delegate sends response to other Delegates -> Delegate reaches consensus after receiving 2/3 positive responses -> Each Delegate signs the block and publishes it-> Each Delegate receives a full block. Block reward 6 GAS distributed proportionally in accordance with the NEO holding ratio among NEO holders. Speaker rewarded with transaction fees (mostly 0). * Stake 1000 GAS to nominate yourself for Bookkeeping(Consensus Node)
[13] EOS (Delegated Proof of Stake) - those who hold tokens on a blockchain adopting the EOS.IO software may select* block producers through a continuous approval voting system and anyone may choose to participate in block production and will be given an opportunity to produce blocks proportional to the total votes they have received relative to all other producers. At the start of each round 21 unique block producers are chosen. The top 20 by total approval are automatically chosen every round and the last producer is chosen proportional to their number of votes relative to other producers. Block should be confirmed by 2/3 or more of elected Block producers. Block Producer rewarded with Block rewards. *the more EOS tokens a stakeholder owns, the greater their voting power
[The XRP Ledger Consensus Process]
[14] Ripple - Each node receives transaction from external applications -> Each Node forms public list of all valid (not included into last ledger (=block)) transactions aka (Candidate Set) -> Nodes merge its candidate set with UNLs(Unique Node List) candidate sets and vote on the veracity of all transactions (1st round of consensus) -> all transactions that received at least 50% votes are passed on the next round (many rounds may take place) -> final round of consensus requires that min 80% of Nodes UNL agreeing on transactions. It means that at least 80% of Validating nodes should have same Candidate SET of transactions -> after that each Validating node computes a new ledger (=block) with all transactions (with 80% UNL agreement) and calculate ledger hash, signs and broadcasts -> All Validating nodes compare their ledgers hash -> Nodes of the network recognize a ledger instance as validated when a 80% of the peers have signed and broadcast the same validation hash. -> Process repeats. Ledger creation process lasts 5 sec(?). Each transaction includes transaction fee (min 0,00001 XRP) which is destroyed. No block rewards.
[The Stellar consensus protocol]
[15] Stellar (Federated Byzantine Agreement) - quite similar to Ripple. Key difference - quorum slice.
[Proof of Burn]
[16] Slimcoin - to get the right to write blocks Node should “burn” amount of coins. The more coins Node “burns” more chances it has to create blocks (for long period) -> Nodes address gets a score called Effective Burnt Coins that determines chance to find blocks. Block creator rewarded with block rewards.
[Proof of Importance]
[17] NEM - Only accounts that have min 10k vested coins are eligible to harvest (create a block). Accounts with higher importance scores have higher probabilities of harvesting a block. The higher amount of vested coins, the higher the account’s Importance score. And the higher amount of transactions that satisfy following conditions: - transactions sum min 1k coins, - transactions made within last 30 days, - recipient have 10k vested coins too, - the higher account’s Important score. Harvester is rewarded with fees for the transactions in the block. A new block is created approx. every 65 sec.
[Proof of Devotion]
[18] Nebulas (Proof of Devotion + BFT) - quite similar to POI, the PoD selects the accounts with high influence. All accounts are ranked according to their liquidity and propagation (Nebulas Rank) -> Top-ranked accounts are selected -> Chosen accounts pay deposit and are qualified as the blocks Validators* -> Algorithm pseudo-randomly chooses block Proposer -> After a new block is proposed, Validators Set (each Validator is charged a deposit) participate in a round of BFT-Style voting to verify block (1. Prepare stage -> 2. Commit Stage. Validators should have > 2/3 of total deposits to validate Block) -> Block is added. Block rewards : each Validator rewarded with 1 NAS. *Validators Set is dynamic, changes in Set may occur after Epoch change.
[IOTA Algorithm]
[19] IOTA - uses DAG (Directed Acyclic Graph) instead of blockchain (TANGLE equal to Ledger). Graph consist of transactions (not blocks). To issue a new transaction Node must approve 2 random other Transactions (not confirmed). Each transaction should be validate n(?) times. By validating PAST(2) transactions whole Network achieves Consensus. in Order to issue transaction Node: 1. Sign transaction with private key 2. choose two other Transactions to validate based on MCMC(Markov chain Monte Carlo) algorithm, check if 2 transactions are valid (node will never approve conflicting transactions) 3. make some PoW(similar to HashCash). -> New Transaction broadcasted to Network. Node don’t receive reward or fee.
[PBFT + PoW]
[20] Yobicash - uses PBFT and also PoW. Nodes reach consensus on transactions by querying other nodes. A node asks its peers about the state of a transaction: if it is known or not, and if it is a doublespending transaction or not. As follow : Node receives new transaction -> Checks if valid -> queries all known nodes for missing transactions (check if already in DAG ) -> queries 2/3 nodes for doublepsending and possibility -> if everything is ok add to DAG. Reward - nodes receive transaction fees + minting coins.
[Proof of Space/Proof of Capacity]
[21] Filecoin (Power Fault Tolerance) - the probability that the network elects a miner(Leader) to create a new block (it is referred to as the voting power of the miner) is proportional to storage currently in use in relation to the rest of the network. Each node has Power - storage in use verified with Proof of Spacetime by nodes. Leaders extend the chain by creating a block and propagating it to the network. There can be an empty block (when no leader). A block is committed if the majority of the participants add their weight on the chain where the block belongs to, by extending the chain or by signing blocks. Block creator rewarded with Block reward + transaction fees.
[Proof of Elapsed Time (POET)]
[22] Hyperledger Sawtooth - Goal - to solve BFT Validating Nodes limitation. Works only with intel’s SGX. PoET uses a random leader election model or a lottery based election model based on SGX, where the protocol randomly selects the next leader to finalize the block. Every validator requests a wait time from an enclave (a trusted function). -> The validator with the shortest wait time for a particular transaction block is elected the leader. -> The BlockPublisher is responsible for creating candidate blocks to extend the current chain. He takes direction from the consensus algorithm for when to create a block and when to publish a block. He creates, Finalizes, Signs Block and broadcast it -> Block Validators check block -> Block is created on top of blockchain.
[23] Byteball (Delegated Byzantine Fault Tolerance) - only verified nodes are allowed to be Validation nodes (list of requirements https://github.com/byteball/byteball-witness). Users choose in transaction set of 12 Validating nodes. Validating nodes(Witnesses) receive transaction fees.
[24] Nano - uses DAG, PoW (HashCash). Nano uses a block-lattice structure. Each account has its own blockchain (account-chain) equivalent to the account’s transaction/balance history. To add transaction user should make some HashCash PoW -> When user creates transaction Send Block appears on his blockchain and Receive block appears on Recipients blockchain. -> Peers in View receive Block -> Peers verify block (Double spending and check if already in the ledger) -> Peers achieve consensus and add block. In case of Fork (when 2 or more signed blocks reference the same previous block): Nano network resolves forks via a balance-weighted voting system where representative nodes vote for the block they observe, as >50% of weighted votes received, consensus achieved and block is retained in the Node’s ledger (block that lose the vote is discarded).
[25] Holochain - uses distributed hash table (DHT). Instead of trying to manage global consensus for every change to a huge blockchain ledger, every participant has their own signed hash chain. In case of multi-party transaction, it is signed to each party's chain. Each party signs the exact same transaction with links to each of their previous chain entries. After data is signed to local chains, it is shared to a DHT where every neighbor node validate it. Any consensus algorithms can be built on top of Holochain.
[26] Komodo ('Delegated' Delayed Proof of Work (dPoW)) - end-to-end blockchain solutions. DPoW consensus mechanism does not recognize The Longest Chain Rule to resolve a conflict in the network, instead the dPoW looks to backups it inserted previously into the chosen PoW blockchain. The process of inserting backups of Komodo transactions into a secure PoW is “notarization.” Notarisation is performed by the elected Notary nodes. Roughly every ten minutes, the Notary nodes perform a special block hash mined on the Komodo blockchain and take note of the overall Komodo blockchain “height”. The notary nodes process this specifc block so that their signatures are cryptographically included within the content of the notarized data. There are sixty-four “Notary nodes” elected by a stake-weighted vote, where ownership of KMD represents stake in the election. They are a special type of blockchain miner, having certain features in their underlying code that enable them to maintain an effective and cost-efcient blockchain and they periodically receives the privilege to mine a block on “easy difculty.”
Source: https://www.reddit.com/CryptoTechnology/comments/7znnq8/my_brief_observation_of_most_common_consensus/
Whitepapers Worth Looking Into:
IOTA -http://iotatoken.com/IOTA_Whitepaper.pdf
NANO -https://nano.org/en/whitepaper
Bitcoin -https://bitcoin.org/bitcoin.pdf
Ethereum: https://github.com/ethereum/wiki/wiki/White-Paper
Ethereum Plasma (Omise-GO) -https://plasma.io/plasma.pdf
Cardano - https://eprint.iacr.org/2016/889.pdf
submitted by heart_mind_body to CryptoCurrency [link] [comments]

SHA-256 Coin Mining Rig BITCOIN SHA-256 MINING CONTRACT IS BACK ON GENESIS MINING & RETURN OF INVESTMENT REVIEW What is a Bitcoin hash and SHA-256 - YouTube What would happen to Bitcoin if SHA256 were broken? HASHFLARE  Bitcoin Contract Price Doubles And No More Lifetime Contract. (Very Disappointing)

What Is SHA-256 And How Is It Related to Bitcoin? Last Updated: 1st November 2018 . SHA-256 is a cryptographic hash function that takes an input of a random size and produces an output of a fixed size. Hash functions are powerful because they are ‘one-way’. What this is means is, it is possible for anyone to use a hash function to produce an output when given an input; however, it is ... The Bitcoin Protocol-specification gives an example of double-SHA-256 encoding. hello 2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824 (first round of ... SHA-256d is the hash function forming the core of Bitcoin. Contents. 1 About; 2 Example; 3 See also; 4 Refernces; About . SHA-256d was proposed in one of the Ferguson/Schneier books like so: SHA-256d(x) = SHA-256(SHA-256(x)) The motivation for this construction is to avoid length extension attacks. Example . An example is this protocol designed to provide mutual proof that each party has made ... Bitcoin uses double hashing almost everywhere it hashes in one of two variants: RIPEMD160(SHA256(x)) called Hash160 which produces a 160 bit output. hashing the public key to generate part of a Bitcoin addresses; SHA256(SHA256(x)) called Hash256 which produces a 256 bit output. generating the checksum in a Bitcoin address; hashing the block in a merkle tree ; linking transaction outputs and ... Merkle trees in bitcoin use a double SHA-256, the SHA-256 hash of the SHA-256 hash of something. If, when forming a row in the tree (other than the root of the tree), it would have an odd number of elements, the final double-hash is duplicated to ensure that the row has an even number of hashes. First form the bottom row of the tree with the ordered double-SHA-256 hashes of the byte streams of ...

[index] [47034] [14776] [24070] [15582] [13832] [28594] [37866] [28276] [6633] [24281]

SHA-256 Coin Mining Rig

How We Created the First SHA-1 Collision and What it Means for Hash Security - Duration: 43:11. Black Hat 10,194 views This video explains the concept of hashing and SHA-256 for newbies. For more information visit http://99bitcoins.com/what-is-bitcoin-hash/ Blagovest Belev explains why Bitcoin has chosen to use the SHA-256 algorithm and the concerns that go with it. Blagovest Belev graduated from the American University in Bulgaria in 2009 and is ... Mine Bitcoin, DASH, Ethereum and other cryptocurrencies DAILY with HashFlare! https://hashflare.io/r/C7D68F43 Use code - cElIM5 - and get 3% off every purcha... Double My BTC offers a great way to invest bitcoins by providing the hottest bitcoin investing service on the Internet.Double your BITCOIN is the best option when it comes to doubling or ...

#